Abstract:
OBJECTIVE To explain the material basis and biological mechanism of Astragali Radix’s “invigorating Qi” effect to regulate energy metabolism.
METHODS The TCMSP database and literature search collected potential active components of Astragali Radix, the SEA database performed target prediction based on structural similarity, and the GeneCards, OMIM, and TTD databases obtained energy metabolism targets. Cytoscape software was used to construct protein-protein interaction network maps of Astragali Radix regulated energy metabolism targets, and GO and KEGG enrichment analyses were performed. Molecular docking and hierarchical cluster analysis were performed to evaluate the target-component affinity between the whole constituents of Astragali Radix and key targets, and the effects of representative compounds of Astragali Radix on the energy metabolism of H9C2 cardiomyocytes and GES-1 gastric epithelial cells were detected, and the binding mode analysis was conducted.
RESULTS Network pharmacology results showed that there were 126 potential targets of Astragali Radix regulating energy metabolism. GO and KEGG enrichment analysis showed that Astragali Radix regulating energy metabolism might be related to gene expression of oxidation-reduction process, protein and enzyme synthesis. Among them, SIRT1 and PPARγ were key targets involved in the regulation of energy metabolism. Molecular docking and hierarchical clustering showed that Astragali Radix components had superior targeting to SIRT1 and PPARγ, and three representative compounds were selected for
in vitro experimental verification in combination with molecular docking scores. Quercetin and kaempferol could promote energy metabolism in H9C2 cardiomyocytes and GES-1 gastric epithelial cells. The binding mode analysis showed that quercetin and kaempferol had preferable binding ability to SIRT1 and PPARγ.
CONCLUSION In this study, the material basis and biological mechanism of Astragali Radix regulating energy metabolism are preliminarily explained by traditional Chinese medicine chemo-bio informatics methods, which provide a scientific basis for the connotation of Astragali Radix exerting the effect of stagnation and arthralgia through “invigorating Qi” in traditional Chinese medicine.