基于合成图像数据集和深度学习的中药饮片识别方法

    Chinese Herbal Medicine Recognition Method Based on Composite Image Dataset and Deep Learning

    • 摘要:
      目的  设计中药饮片图像的自动合成方法和用于中药饮片识别的深度学习模型,实现对中药饮片的自动识别。
      方法 利用图像处理技术分割单个中药饮片样本的图像,而后随机抽取多个品种的中药饮片样本图像进行合成,生成训练数据集;并将对比学习技术与YOLOv5模型相结合,促使骨干网络提取更有效的特征,用于中药饮片的品种识别。
      结果 在合成和真实图像上的测试结果表明,对30个品种中药饮片的平均识别率>95%,平均每张图像的处理时间约为28 ms。边界框的精度和相似品种的识别率都得到了有效提升。
      结论 利用合成图像数据集训练的深度学习模型可实现对多个品种中药饮片的有效识别,并可推广到更广泛的中药饮片识别应用中。

       

      Abstract:
      OBJECTIVE  To design an automatic composition method for Chinese herbal medicine images and a deep learning model, achieving automatic recognition of Chinese herbal medicine.
      METHODS Image processing techniques were employed to segment individual Chinese herbal slice samples and then randomly selected sample images of multiple types were synthesized to generate a training dataset. Contrastive learning was combined with YOLOv5 model to enable the backbone to extract more effective features for variety recognition of Chinese herbal medicine.
      RESULTS  Experiment on composite and real images showed that the average recognition rate >95% and the average processing time per image was about 28 ms. The accuracy of bounding boxes and the recognition rate of similar types had been effectively improved.
      CONCLUSION  The deep learning model trained on the synthesized image dataset can effectively identify a variety of Chinese herbal medicine and can be extended to broader applications in Chinese herbal medicine recognition.

       

    /

    返回文章
    返回