Exploring the Main Active Components and Mechanism of Volatile Oil in Ardisia Japonica for the Treatment of Chronic Obstructive Pulmonary Disease Based on GC-MS and Bioinformatics
-
Graphical Abstract
-
Abstract
OBJECTIVE To predict the mechanism of action of the volatile components of Ardisia japonica in the treatment of chronic obstructive pulmonary disease(COPD) based on GC-MS technology and systems biology.METHODS GC-MS method was used to analyze the volatile oil of Ardisia japonica and the relative content of each component was determined by the area normalization method. The main active components and targets of the volatile oil of Ardisia japonica were screened by TCMID, TCMSP, and PharmMapper database. The “component-target” network of Ardisia japonica was constructed by Cytoscape software. OMIM and Genecards database was used to mine COPD related targets, String database and Cytoscape software was used to construct and map protein-protein interaction network; conduct pathway enrichment analysis was established through Metascape database; further rely on Discovery Studio(Version 4.5) to evaluate the affinity of the compound with the core target of COPD.RESULTS A total of 5 main common active components and 154 potential targets were screened. The core targets included NTRK1, TNF, VEGFA, MAPK1 and M2C2. Through GO enrichment analysis, 2665 items(P<0.05) were obtained, including 2220 items for biological processes, 233 items for molecular functions, and 212 items for cell components. There were 242 KEGG pathways(P<0.05), mainly involving vascular endothelial growth factor(VEGF),tumor necrosis factor(TNF), and NF-κB signaling pathways. The results of molecular docking showed that caryophyllene,humulene, and ylangene had high binding ability to the core target.CONCLUSION Ardisia japonica volatile oil may regulate VEGF, TNF, NF-κB and other pathways to treat COPD through TNF, VEGFA, MAPK1 and other targets.
-
-