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Research Progress of Self-regulated Insulin Delivery Gel System

FENG Beibei, SHE Huanhuan, ZHANG Yi, XIE Weihong*(College of Bioengineering and Food, Hubei University of
Technology, Wuhan 430000, China)

ABSTRACT: Diabetes is a global medical and health problem. At present, subcutaneous injection of insulin has some problems,
such as inconvenient administration, causing pain to patients and easily causing hypoglycemia risk. Therefore, painless
administration and precise release of drugs to control blood glucose are the key to the next generation of diabetes treatment. In
the insulin self-adjusting system, the polymer hydrogel controlled release system can accurately control the release of insulin,
monitor and control the blood glucose level in real time, which is of great significance to improve the treatment effect of diabetes.
In this paper, the latest research progress of three kinds of glucose sensing insulin release gel systems at home and abroad is
reviewed. The drug delivery mechanism, advantages and disadvantages of protein glucose sensing system, non protein glucose
sensing system and their combination are described in detail. The research on insulin self-adjusting gel delivery system is
summarized and prospected.

KEYWORDS: diabetes; insulin; adjustable administration; gel
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Fig. 1 Schematic of Gox-based glucose sensing expansion /
shrink hydrogel

In glucose penetrates into the gel system, A—bound to GOx to produce
gluconate; B—pH reduction caused cationic hydrogel expansion; C—
anionic hydrogel contraction.
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Fig. 2 Schematic diagram of the GOx-based glucose
sensing lysis-type hydrogel

A-the glucose is in contact with the disintegrated hydrogel; B-the

gluconic acid produced in the system disintegrates the gel and releases
the insulin inside the gel.
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Fig. 3 Schematic diagram of the ConA-based glucose
sensing hydrogel

A—the hydrogel was loaded inside with the ConA; B—when combined

with the glucose, the gel skeleton was destroyed, releasing insulin from
the inside of the gel.
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Fig. 4 Schematic diagram of the PBA-based glucose
sensing hydrogel

A—the PBA loaded inside the hydrogel had a -OH group, which enables
the system to connect with each other to form a gel; B-when glucose
enters the gel, the PBA bound to glucose is negatively charged,
generating electrostatic repulsion to expand the gel and releasing insulin.
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