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Advances in Computer-aided Metalloenzyme-targeted Drug Discovery

YU Junlin, LI Guobo (West China School of Pharmacy, Sichuan University, Chengdu 610041, China)

ABSTRACT: Metalloenzyme is a generic term normally used for the enzymes containing functionally and/or structurally
essential metal ions, which are widely involved in key physiological and pathological processes, and are a colony of important
drug targets. Electronic and geometric structures of metal-binding sites usually have complicated, flexible, dynamic features,
which make computer-aided drug design more challenging. This paper summarizes the research progress, strengths and
challenges for metal-binding pharmacophores, structure-based drug design, and artificial intelligence used in
metalloenzyme-targeted drug discovery, with the hope to provide reference and reflection for high-efficient innovative drug

discovery targeting metalloenzymes.

KEYWORDS: metalloenzyme; pharmacophore; artificial intelligence; drug discovery; molecular dynamics
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