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计算机辅助金属酶靶向药物发现的研究进展 
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摘要：金属酶是指含功能必需和(或)结构必需金属离子的酶的统称，广泛参与关键生理和病理过程，是非常重要的药物作

用靶标群。金属结合位点的电子和几何结构具有复杂性、多变性和动态性等特点，使得计算机辅助药物设计存在挑战性。

本文综述金属结合药效团，基于结构的药物设计，人工智能等策略应用于金属酶靶向药物发现的研究进展、优势和面临

挑战，期望能为金属酶靶向创新药物研发提供借鉴和思考。 
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ABSTRACT: Metalloenzyme is a generic term normally used for the enzymes containing functionally and/or structurally 
essential metal ions, which are widely involved in key physiological and pathological processes, and are a colony of important 
drug targets. Electronic and geometric structures of metal-binding sites usually have complicated, flexible, dynamic features, 
which make computer-aided drug design more challenging. This paper summarizes the research progress, strengths and 
challenges for metal-binding pharmacophores, structure-based drug design, and artificial intelligence used in 
metalloenzyme-targeted drug discovery, with the hope to provide reference and reflection for high-efficient innovative drug 
discovery targeting metalloenzymes. 
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金属元素是所有生命体重要组成部分。金属离

子可直接调控某些重要生命过程，如铁死亡[1]、铜

死亡[2]、金属免疫[3]等，也可作为金属酶的辅因子

发挥重要生物功能。金属酶通常含有一个或多个

功能必需和(或)结构必需的过渡金属离子，如锌离

子(Zn2+)、铁离子(Fe2+/3+)、铜离子(Cu2+)、锰离子

(Mn2+)、钴离子(Co2+)、钼离子(Mo2+)、镍离子(Ni2+)
等；这些金属离子往往与蛋白氨基酸或其他辅因

子形成配位作用，并发挥路易斯酸、电子传递、

结构固定等作用支撑金属酶催化功能[4]。自然界中

超过 1/3 的酶可被归类为金属酶，覆盖了氧化还原

酶、水解酶、转移酶、聚合酶、异构酶和连接酶

六大类型[5]。金属酶广泛存在于人体中，在包括分

子合成降解，信号转导转换，表观遗传调节，免

疫动态调控等几乎所有生命过程中都发挥着关键

作用；也有大量金属酶存在于微生物中，间接影

响着人的生命过程。金属酶的活性异常或过量表

达与人类疾病密切相关，被认为是一大类有潜力

的药物作用靶标[4]。目前已有不少靶向金属酶的小

分子药物被应用于心血管、肿瘤、皮肤炎症、哮

喘等疾病的治疗，还有大量针对新验证金属酶靶

标的抑制剂正处于临床开发阶段[4,6]。然而，目前

绝大多数具有重要生物功能和疾病相关的金属酶

靶标还未被充分挖掘和开发，说明靶向金属酶的

药物研发是一个极具潜力的研究方向。 
计算化学和计算药物化学领域近些年取得的

重大进展，有效加速了药物发现过程，提高了药

物研发效率。例如，计算机运算能力、经典力场精

度和采样方法等方面的综合提升使得自由能扰动

等方法在药物发现中发挥着越来越重要作用[7-8]。又

如，基于深度学习的生成模型的发展，为苗头化

合物高效发现提供了新的有效策略[9]。同时，近几

年结构生物学也取得了长足进步，如冷冻电子显

微镜技术[10]和基于深度学习的蛋白质结构预测技

术[11-12]，使人们能够获得更多可靠的蛋白三维结

构，为计算机辅助药物发现提供了重要结构基础。
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由于金属酶所包含的金属离子具有复杂的电子状

态结构，表现出强烈的极化和电荷转移效应，与

蛋白和药物分子作用时，其能量和几何结构存在

复杂性、多变性和动态性，增加了计算机辅助药

物发现的难度和挑战[13]。鉴于金属酶的含金属离

子的特殊性以及大多数金属酶缺乏特异性药物或

尚未开发的现状，本文聚焦于计算机辅助金属酶靶

向药物发现策略，从金属结合药效团，基于结构的

药物设计，人工智能辅助药物发现等角度，综述这

些计算策略的研究进展、优势和面临挑战，期望能

为金属酶靶向药物快速研发提供线索和借鉴。 
1  基于金属结合药效团的药物发现 

由于金属酶活性位点金属离子缺电子和强极

化效应，靶向金属酶的小分子药物多数会涉及与

活性位点金属离子形成配位键等强相互作用。本

文将金属酶靶向药物与活性位点金属离子配位结

合 的 化 学 骨 架 或 片 段 ， 称 为 金 属 结 合 药 效 团

(metalbinding pharmacophore，MBP)。例如，经典

抗高血压药物卡托普利的巯基作为 MBP 与血管紧

张素转化酶活性位点 Zn2+形成配位作用，阻止血

管紧张素 II 的生成，减少血管收缩和血管紧张素

II 受体激活，降低血压[14]；利尿药乙酰唑胺则通

过其磺酰胺基团作为 MBP 与碳酸酐酶活性位点

Zn2+配位，使肾小管上皮细胞中 H2CO3 的形成减

少，H+的产生下降，从而发挥利尿的功效[4]。 
为了全面总结 MBP 的特征，笔者所在团队早

期分析了 PDB 数据库中 6 590 个金属酶-配体复合

物结构，其中约 65%的小分子配体涉及金属离子

配位作用，由此总结出 485 种不同结构的 MBP[5]。

这些 MBP 大多数是以单齿或双齿的方式与金属离

子配位，对配体的结合至关重要。发现有 206 个

MBP(约 42%)结合的金属酶数量>2 个，其中 75 个

MBP 可与>5 个金属酶靶点配位结合。这不仅说明

MBP 可作为连接不同金属酶的重要纽带，也提示

不同金属酶抑制剂的 MBP 可以相互借鉴。例如，

在基于片段的药物设计策略中，可以将 MBP 作为

关键片段衍生新的先导化合物[6]。Deshaie 与 Cohen
课题组合作，通过筛选 MBP 化合物库，发现 8-
巯基喹啉为蛋白酶体异肽酶 Rpn11 的高配体效率

抑制剂，经过结构优化获得了一个高活性 Rpn11
抑制剂 Capzimin[6,15]。基于 MBP 对药物发现的重

要性，多项研究采用生物电子等排体、生物无机

化学等方法对 MBP 进行拓展和合理设计，促进了

基于 MBP 药物发现策略的发展[16-20]。通过药效团

融合策略，发现了巯基酰胺硼酸类金属 β 内酰胺

酶(metallo β lactamase，MBL)和丝氨酸 β 内酰胺酶

(serine β Lactamase，SBL)双重抑制剂。例如将靶向

MBL 的 3-巯基-2-甲基丙酸与靶向 SBL 的氨基硼

酸片段进行拼接，发现了双重 MBL/SBL 抑制剂 1 
(图 1)[21]，进一步验证了 MBP 对于先导发现的重

要性。更值得注意的是，部分 MBP 如单磷酸、二

磷酸和异羟肟酸等，可与>10 种的金属酶靶点结

合，会造成金属酶抑制剂的杂泛性，有可能引起

潜在脱靶风险。 
 

 
 

图 1  基于药效团融合策略发现了双重 MBL/SBL 抑制剂

1，并通过复合物晶体结构 VIM-2:1(PDB ID：6J8R)及
KPC-2:1(PDB ID：6J8Q)[21]验证了该策略的可行性 
Fig. 1  Pharmacophore fusion strategy-based discovery of 
dual MBL/SBL inhibitor 1, validated by the crystal structures 
of VIM-2:1 (PDB ID: 6J8R) and KPC-2:1 (PDB ID: 6J8Q)[21] 
complexes 
 

这些 MBP 与金属酶关联分析，启示在靶向金

属酶的药物分子设计时，既可参考已报道的配位

模式来合理选择 MBP，提高与靶标的结合亲和力，

又要考虑 MBP 杂泛性引起潜在的毒性风险。为此，

通过总结不同类型 MBP 与活性位点金属离子的配

位参数(如距离、方向和角度)，获得了一套金属配

位药效团特征，并结合阳离子-π、卤键、氢键、离

子键等重要药效团特征，再集成特征导向分子匹

配算法，发展了一种锚定药效团特征识别与分子

匹配方法 AncPhore。该方法凸显了锚定药效团特

征的贡献和多态性，提升了基于药效团模型的先

导发现效率和效能，适用于包括金属酶在内的所

有靶点类型的药物发现，是对传统药效团方法的

重要发展[22]。将 AncPhore 方法用于 MBL、吲哚

胺/色氨酸-2,3-双加氧酶等金属酶抑制剂筛选，成

功发现了多个新先导化合物，证明了其实用性和
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有效性[22-23]。化合物 2 与 MBL 的锚定药效团模型

匹配较好，与复合物晶体结构的作用模式基本一

致[22-23]，见图 2。总之，基于金属结合药效团是一

种重要的金属酶靶向药物发现策略。 
 

 
 

图 2  化合物 2 与 MBL 锚定药效团模型匹配(A)及化合物

2 与 VIM-2 MBL 的复合物晶体结构图 (PDB ID ：

7CHV)(B)[22] 
Fig. 2  Fitting mode of compound 2 with VIM-2 anchor 
pharmacophore model(A) and crystal structure of VIM-2 
complexed with compound 2(PDB ID: 7CHV)(B)[22] 
 
2  分子对接辅助金属酶药物发现 

分子对接是一种预测靶点与配体互补性的计

算方法，可以从大型化合物数据库中快速筛选获

得靶点结合的潜在化合物。分子对接已被广泛应

用于靶向金属酶的药物发现中，特别是早期苗头

和先导化合物的发现。例如，Hsu 等[24]利用分子

对接筛选类药性化合物库发现结构新颖的 IIa 类组

蛋白去乙酰化酶(histone deacetylase，HDAC)抑制

剂；Cain 等[25]通过分子对接将片段对接到含有 2
个锌离子的 NDM-1 活性位点，并随后将这些片段

连接起来获得一些潜在可合成的化合物，由此获

得了多个纳摩尔级 NDM-1 抑制剂；Choi 等[26]综

合利用晶体结构分析和分子对接发现高活性、高

选择性的基质金属蛋白酶 13。 
绝大多数分子对接方法依赖于打分函数，对

靶点与配体形状和静电互补性以及结合亲和力的

预测。基于力场对接方法的打分函数常将金属-配

体作用视为静电和范德华力作用；这样的打分函

数未考虑金属-配体作用的电子密度，忽略了电子

转移和极化效应，影响了计算准确度。有研究人

员则通过几何约束限制配体与金属配位的位置，

来提高分子对接计算效率。例如，Caporuscio 等[27]

针对细胞色素芳香化酶 CYP19，采用与血红素铁

离子结合的几何限制，成功发现纳摩尔级的新型

先导化合物。也有专门针对含锌离子的金属酶发

展了基于经验和知识的打分函数，提高了对接打

分的准确度[28-29]。此外，基于电荷自洽的密度泛

函-紧束缚方法的分子对接算法可以较好地预测金

属-配体配位键，但目前仅支持含锌离子、血红素

铁离子等部分金属酶的计算和虚拟筛选[30-31]。 
蛋白 -配体相互作用指纹图谱 (protein-ligand 

interaction fingerprint，IFP)方法通过对靶点-配体

结合模式的编码，提炼靶标-配体关键相互作用特

征，是提高先导发现效率的一种重要策略[32]。笔

者所在团队前期发展了一种 IFP 分析方法(IFP 
analyses)[33]，可准确识别包括金属配位、氢键供体、

氢键受体、离子键、疏水、面对面 π-π 堆积、边对

面 π-π 堆积等蛋白-配体相互作用特征，也可定制靶

点最关键作用特征，突出靶点特异性。IFP analysis
可用于基于结构的虚拟筛选和靶标预测[33-34]。以金

属碳青霉烯酶 VIM-2 为靶点，结合分子对接和

IFPanalysis 定制了 VIM-2 特异性虚拟筛选流程，

对 Vitas-M 数据库 120 万个化合物进行筛选，并挑

选了 20 个化合物进行酶水平活性测试，发现 15
个化合物对 VIM-2 均有抑制活性，说明了该方法

可以提高虚拟筛选命中率；结构生物学研究发现异

吲哚啉类化合物为非金属螯合 VIM-2 抑制剂[33] 

(图 3)。 
3  分子动力学模拟金属酶与配体的诱导契合、热

力学和动力学 
尽管分子对接被广泛应用，但尚无法充分考

虑活性口袋柔性、溶剂效应等问题，影响了计算

精度和准确度，分子动力学模拟则可以反映靶点

柔性、蛋白-配体结合诱导契合效应等[35]，被应

用于金属酶靶向药物发现。例如，Marek 等 [36]

为利用分子动力学模拟，发现 HDAC8 选择性抑

制剂大都以特定的“L-型”结合构象与 HDAC8
特异性口袋结合，揭示了 HDAC8 选择性抑制剂

机制，对下一代 HDAC 选择性抑制剂的开发具有

启发意义。 
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图 3  基于 IFPanalyses 方法的虚拟筛选流程(A)和吲哚啉类化合物 3 与 VIM-2 的复合物晶体结构(B) 

Fig. 3  Pipeline of IFPanalyses-based virtual screening(A) and the structure of indoline compound 3 in complex with VIM-2(B) 

 

由于金属结合位点电子结构的复杂性、可变

性和动态性等，分子动力学模拟方法中如何考虑

金属酶-配体结合的力场参数仍存在一定挑战。为

提供更准确的力场参数，Li 等[37]在 12-6 LJ 非键模

型基础上，考虑了电荷诱导的偶极相互作用，开发

了 12-6-4 LJ 非键模型，能比较准确地计算二价、

三价和四价金属的力场参数，并应用于金属酶相关

的分子动力学模拟研究中。Josino 等[38]应用 12-6-4 
LJ 非键模型，分别模拟了含 Zn2+和 Mn2+磷霉素耐

药蛋白酶与抑制剂 ANY1 的动态结合模式，并计算

了两者的结合自由能，为未来磷霉素耐药蛋白酶抑

制剂结构优化提供参考。也有课题组采用量子力学/
分子力学(quantum mechanics/molecular mechanics，

QM/MM)策略优化金属酶-配体结合模式，以提高计

算准确率。例如，Yang 等[39]利用半经验 QM/MM
方法(如 DFTB3)和密度泛函理论 QM/MM 方法(如
B3LYP)，对 6 种不同 Zn2+依赖的金属酶与相应配

体的结合模式进行模拟，为含 Zn2+金属酶的复合物

建模和抑制剂设计提供了重要信息。 
分子动力学不仅能较好地模拟金属结合位点

信息，包括小分子金属配位结合等，也可能发现

新的变构口袋或变构通信现象，这对于靶向金属

酶药物发现具有重要意义。随着计算机运算能力

显著增强(如 GPU 和云计算等)和分子动力学模拟

算法的不断改进(如采样方法等)，长时程分子动力

学模拟(如微秒级)还可以实现蛋白-配体结合热力

学和动力学等关键参数的计算。特别是针对金属酶

的同一系列化合物，可以采用特定的参数和流程，

模拟金属-配体配位键的断裂和形成，来反映化合物

的结合和解离状态，从而比较同系衍生物的动力学

参数，为先导优化提供更有价值的信息。 
4  人工智能辅助药物发现 

随着大量靶标及药物相关数据的增加、深度

学习等人工智能技术的不断发展，人工智能技术

逐渐渗透到药物研发的多个关键环节。例如，

Stokes 等[40]建立了基于深度学习的抗菌药物活性

分子预测模型，从 108 个化合物中发现了一种新型

抗菌药物 Halicin，其表现出广谱抗菌活性，包括

结核杆菌和碳青烯抗菌药物耐药的肠杆菌科。又

如，Zhavoronkov 等[41]发展了一种生成张量强化学

习模型 GENTRL，用于小分子从头设计，其优势

在于可以同时考虑化合物的合成可行性、新颖性

和生物活性；利用 GENTRL 成功发现了酪氨酸蛋

白激酶受体 DDR1 抑制剂，为抗纤维化疾病等创

新药物研发提供了新型先导化合物。 
由于金属酶活性位点的金属离子对于活性分

子结合非常重要，但目前仅有少数深度学习方法，

在预测靶标-配体相互作用时，考虑到金属离子的

作用。Stepniewska-Dziubinska 等[42]提出基于三维

卷积神经网络的 Pafnucy 模型用于预测蛋白-配体

结合亲和力，该模型是以原子类型、原子杂化方

式等特征表征活性位点，并考虑了活性位点处金

属离子，表现出较好的预测能力。Jiménez 等[43]

提出的 KDEEP 模型，则通过原子占有率来表征活性
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位点，考虑了疏水性、芳香性、排除体积、金属

等不同特征，比 Pafnucy 模型预测能力更强。近几

年也有基于图神经网络模型的靶标-配体结合亲和

力预测方法考虑了金属离子。例如，Jiang 等[44]提

出的 InteractionGraphNet 模型，以复合物结构为输

入，构建了配体图、蛋白口袋图、蛋白-配体结合

图，考虑包含多种金属离子和其他常见原子类型，

依次采用分子内图卷积模块、分子间图卷积模块、

图池化模块更新上述子图信息，最终通过全连接

预测结合亲和力。尽管这些方法考虑到了金属离

子信息，但未充分反映金属离子与活性分子的作

用特征和规律，因而仍需发展更多针对金属酶特

征的深度学习模型，以促进金属酶靶向先导的快

速高效发现。 
5  展望 

计算机辅助药物设计策略如金属结合药效

团，基于结构的药物设计等被广泛应用于金属酶

靶向药物发现研究，提高了研发效率。然而，现

有策略仍存在一定局限性，如基于 MBP 的策略不

适合缺乏 3D 结构或催化机制不明确的金属酶靶

标，QM/MM 计算依赖于初始金属酶-配体结合构

象且计算量大、不适合虚拟筛选，深度学习模型

尚未获得金属与活性分子的作用规律等。药物设

计时，如何对待金属结合位点的特殊性是需要充

分考虑的问题。例如，针对同一金属结合位点，

生成药效团模型时，可以考虑存在多种有效的配

位模式或非配位模式，获得多样化的药效团模型

进行虚拟筛选，以更好地获得先导化合物。又如，

在近期报道的虚拟合成子分层枚举筛选[45]新策略

的基础上，考虑金属结合的合成子，将为金属酶

靶向药物发现提供另一种方法。总之，针对金属

靶标群的共同特征和特殊性发展更高效的计算机

辅助药物设计策略，不仅可以赋能靶向金属酶的

创新药物研发，也可促进对药物研发模式的思考。 
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