不同遮光处理对浙贝母品质的影响

陈如兵 1 ,胡杰 2 ,范慧艳 1 ,蒋殷盈 1 ,张水利 1 ,俞冰 1 ,李石清 1 ,张春椿 1* (1.浙江中医药大学,杭州 310053; 2.杭州第一技师学院,杭州 310023)

摘要:目的 探讨不同光照条件对浙贝母生理特性、生物碱含量及生物量的影响规律。方法 采用遮阴网遮阴,共设置了4种光强处理,分别为不遮阴(CK)、遮阴 50%(T1)、遮阴 75%(T2)、遮阴 95%(T3),测定各遮阴处理下浙贝母光合作用参数、生物碱含量和生物量。结果 遮阴对浙贝母光合作用、生物量和生物碱含量有明显影响,适度遮阴可以增大浙贝母净光合速率;透光率在5%时会严重影响浙贝母产量,但能明显增加生物碱贝母素甲的含量。结论 75%遮阴条件下,有助于增大浙贝母的净光合速率,有利于其光合作用的进行。95%遮阴条件下,严重影响浙贝母生物量的累积。遮阴度与生物碱两者之间并不完全平行。

关键词: 不同遮光; 浙贝母; HPLC; 品质

中图分类号: R282.2 文献标志码: A 文章编号: 1007-7693(2019)03-0312-05

DOI: 10.13748/j.cnki.issn1007-7693.2019.03.011

引用本文: 陈如兵、胡杰、范慧艳、等. 不同遮光处理对浙贝母品质的影响[J]. 中国现代应用药学、2019、36(3): 312-316.

Influence of Different Shading Treatments on Fritillaria thunbergii Miq. Quality

CHEN Rubing¹, HU Jie², FAN Huiyan¹, JIANG Yinying¹, ZHANG Shuili¹, YU Bing¹, LI Shiqing¹, ZHANG Chunchun^{1*}(1.Zhejiang Chinese Medical University, Hangzhou 310053, China; 2.Hangzhou First Technician College, Hangzhou 310023, China)

ABSTRACT: OBJECTIVE To investigate the laws how light intensities affect the physiological characteristics, alkaloid contents and biomass of *Fritillaria thunbergii* Miq. METHODS With plastic net shading, four types of light intensities were set, including the light transmittance of 100%(control group CK), 50%(group T1), 25%(group T2) and 5%(group T3). Then photosynthesis parameters, alkaloid content and biomass in different shading treatments were detected separately. RESULTS Shading significantly impacted the photosynthesis, alkaloid contents and biomass of *Fritillaria thunbergii* Miq. Moderate shading accelerated net photosynthesis. The yield of *Fritillaria thunbergii* Miq. was reduced at the light transmittance of 5%, but the content of alkaloids was significantly increase. CONCLUSION The 75% shading condition helps to quicken the net photosynthesis of *Fritillaria thunbergii* Miq. and was beneficial to its photosynthesis, while the 95% shading condition seriously inhibites the biomass accumulation. The degree of shading is not sampletely parallel to the alkaloid.

KEYWORDS: different shading; Fritillaria thunbergii Miq.; HPLC; quality

光合作用是植物、藻类和某些细菌,在可见 光的照射下,经过光反应和碳反应,利用光和色 素、将二氧化碳(或硫化氢)和水转化为有机物,并 释放出氧气(或)氢气的生化过程。光合作用是一系 列复杂的代谢反应的总和,是生物界赖以生存的 基础,也是地球碳氧循环的重要媒介。因此光合 产物通常都是机体生存必不可少的物质,如果光 合产物合成过程中的环节发生障碍,轻则引起生 长停止,重则导致机体突变或死亡^[1]。浙贝母一般 生于海拔较低的山丘荫蔽处或竹林下,遮阴度是 影响其产量高低的重要影响因素之一。为此,本

研究通过设置人工遮阴试验研究光照强度对浙贝 母生长、药材产量和光合生理指标的影响,旨在 为浙贝母栽培生产实践提供理论依据。

1 材料

1.1 仪器

LI-6400 便携式光合作用仪(美国 LI-COR 公司); model LP-80 型 AccuPAR/LAI ceptometer 植物冠层分析仪(美国 decagon 公司); Waters 1525 高效液相色谱仪、Empower2 色谱工作站、Waters2424蒸发光散色检测器均来自美国 waters 公司; Hypersil C₁₈(250 mm×4.6 mm, 5 µm)(大连依利特

基金项目: 国家公益性行业科研专项项目(201407002); 浙江省重中之重学科中药学开放基金项目(Yao2016012); 浙江省中医药科技计划重点研究项目(2014ZZ001); 名贵中药资源可持续利用能力建设(2060302)

作者简介: 陈如兵,男,硕士生 Tel: 18868034820 E-mail: 491873993@qq.com *通信作者: 张春椿,男,副教授 Tel (0571)86613576 E-mail: 10928485@qq.com

分析仪器有限公司); KQ2200DA 型数控超声波清洗器(昆山市超声仪器有限公司); MS104TS 电子天平(上海梅特勒托利多仪器有限公司)。

1.2 试剂和药材

贝母素甲(批号: ST00370120MG)、贝母素乙(批号: ST00380120MG)、贝母辛(批号: ST07720120MG),纯度均 \geq 98%,均购自上海诗丹德生物技术有限公司;甲醇(色谱纯,美国天地有限公司,批号: MS1922-001);三氯甲烷(分析纯,西陇化工股份有限公司,批号: 150521)。

浙贝母取自浙江省金华市磐安县大盘镇浙贝母种植基地,其主要加工方式为生晒处理^[2]: 取洗净晾干水分的鲜鳞茎 10 kg 去芯后,用刀切成 0.5 cm 厚片,放竹上于太阳下晒 5 d 达八成干,收回室内堆放 2 d 再晒 1~2 d 至干,重复 3 次,得干贝片。

1.3 人工环境设置

试验于 2015 年 1~5 月在浙江省金华市磐安县大盘镇浙贝母种植基地内进行。当植株长出第 2 片叶子后用黑色遮阳网进行遮光处理。共设置 4 种遮阴处理。实验小组均为 3.5 m×1 m,分别为不遮阴(CK)、遮阴 50%(T1)、遮阴 75%(T2)、遮阴95%(T3),并且用 AccuPAR 植物冠层分析仪分别测量并确定 T1 遮阴度为 50%,T2 遮阴度为 75%以及 T3 遮阴度为 95%。

2 方法和结果

2.1 光合及生理特性测定

采用 Li-6400 便携式光合作用系统在 4 月中旬上午 9:00—11:30 进行测定,采用开放式气路,样本室空气流速 500 μ mol·s⁻¹,温度 25 ℃,空气相对湿度(RH)50%~70%,光合有效辐射(PAR)采用Li-6400-02B人工光源控制,在 0~2 000 μ mol·m⁻²·s⁻¹内设定 PAR 梯度为 0,20,50,100,150,200,400,600,800,1000,1200,1600,2 000 μ mol·m⁻²·s⁻¹。测定叶片在每一光强下的净光合速率、气孔导度、蒸腾速率、胞间 CO₂ 浓度等光合参数,重复测定 3 次。结果见图 1~4。

由图 1 可知,当 PAR 在 0~400 μmol·m⁻²·s⁻¹内时,随光合有效辐射增强,各个遮阴度的浙贝母净光合速率都迅速增加,当>400 μmol·m⁻²·s⁻¹时,T1 处理组的净光合速率增幅并未降低太多,T2 处理组增幅速率降低较为明显,而T3 组降低最明显,净光合速率均低于其他 3 个处理组,T1在当 PAR 达到 1 500 μmol·m⁻²·s⁻¹时,净光合速率

达到峰值。CK 组在 PAR>400 μ mol·m⁻²·s⁻¹时,净 光合速率出现上下波动状态。

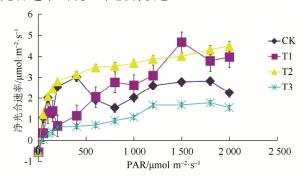


图 1 不同遮阴下浙贝母净光合速率随 PAR 变化曲线图 Fig. 1 Curve of net photosynthetic rate of *Fritillaria thunbergii* Miq. changing with PAR under different shading treatments

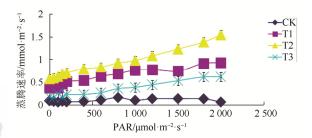


图 2 不同遮阴下浙贝母蒸腾速率随 PAR 变化曲线图 Fig. 2 Curve of transpiration rate of *Fritillaria thunbergii* Miq. changing with PAR under different shading treatments

由图 2 可知,不同遮阴下浙贝母蒸腾速率存在明显差异,CK 处理组的蒸腾速率并未随着 PAR 变化产生明显变化,且低于其他 3 个处理组。T1、T2、T3 处理组蒸腾速率均随着光合有效辐射的增强,呈现平稳上升趋势,其中 T2 组的蒸腾速率增加的最明显。

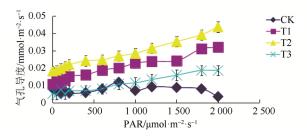


图 3 不同遮阴下浙贝母气孔导度随 PAR 变化曲线图 Fig. 3 Curve of stomatal conductance of *Fritillaria thunbergii* Miq. changing with PAR under different shading treatments

由图 3 可知,不同遮阴下浙贝母气孔导度存在明显差异, CK 处理组的气孔导度并未随着 PAR 变化产生明显变化, T1、T2、T3 处理组均随着 PAR 的增强,气孔导度也呈现平稳上升趋势。其中 T2 组的气孔导度增加的最为明显。

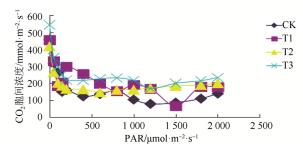


图 4 不同遮阴下浙贝母 CO₂ 胞间浓度随 PAR 变化曲线图 Fig. 4 Curve of CO₂ intercellular concentration of *Fritillaria thunbergii* Miq. changing with PAR under different shading treatments

由图 4 可知,不同遮阴下浙贝母 CO_2 胞间浓度存在明显差异,随着 PAR 的增强,各组浙贝母的 CO_2 胞间浓度均呈现下降态势。当 PAR 在 $0\sim400~\mu\text{mol·m}^{-2}\cdot\text{s}^{-1}$ 内时,随 PAR 增强,各个遮阴度的 浙贝母 CO_2 胞间浓度都迅速下降。当>400 $\mu\text{mol·m}^{-2}\cdot\text{s}^{-1}$ 时,各组浙贝母 CO_2 胞间浓度开始下降缓慢,在达到 $1~500~\mu\text{mol·m}^{-2}\cdot\text{s}^{-1}$ 时,均开始有上扬趋势,T1~L扬趋势相对明显。

2.2. 不同遮阴下浙贝母中总生物碱含量的测定 2.2.1 色谱条件 以乙腈(A)- 0.05%三乙胺水溶液 (B)为流动相进行梯度洗脱: 0~5 min, 55%A; 5~7 min, 55%~75%A; 7~18 min, 85%A。流速为 1 mL·min⁻¹,柱温 30 ℃,采用 ELSD 检测。漂移管温度 55 ℃,载气 40 psi,增益 10。标准品和样品色谱图见图 5。

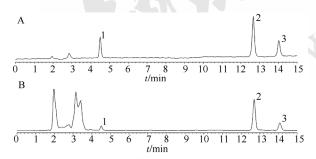


图 5 高效液相色谱图

A-标准品; B-样品; 1-贝母辛; 2-贝母素甲; 3-贝母素乙。

Fig. 5 HPLC chromatograms

A-standard substance; B-sample; 1-peimisine; 2-peimine; 3-peiminine.

2.2.2 供试品溶液的制备 取浙贝母样品粉末约2.0 g(过四号筛),精密称定,置于锥形瓶中,加浓 氨水 4 mL 浸润 0.5 h,再精密加入三氯甲烷-甲醇(4:1)的混合溶液 40 mL,精密称重,混匀,置超声器中超声 1.0 h,静置放冷,再称重,加上述混合溶液补足重量,滤过。精密量取续滤液 10 mL,置蒸发皿中蒸干,再加甲醇溶液并转移至 5 mL 量

瓶中,加甲醇至刻度,摇匀,经 0.45 μm 微孔滤膜过滤,备用。

2.2.3 标准品溶液的配制 取贝母素甲、贝母素乙和贝母辛对照品适量,精密称定,加甲醇制成1 mL含贝母素甲 0.20 mg、贝母素乙 0.29 mg、贝母辛 0.23 mg 混合对照品溶液。

2.2.4 方法学考察

2.2.4.1 线性关系考察 分别吸取混合对照品溶液适量,以甲醇稀释定容,得到 5 个不同浓度的混合对照品溶液。贝母素甲浓度分别为 0.119 2, 0.074 5, 0.029 8, 0.023 84, 0.011 92 $\operatorname{mg·mL}^{-1}$; 贝母素乙浓度分别为 0.103 0, 0.082 4, 0.020 6, 0.016 48, 0.008 24 $\operatorname{mg·mL}^{-1}$; 贝母辛浓度分别为 0.078 0, 0.062 4, 0.015 6, 0.012 48, 0.006 24 $\operatorname{mg·mL}^{-1}$ 。按"2.2.1"项下条件分别进样测定峰面积,以峰面积对溶液浓度进行线性回归,以峰面积为纵坐标(Y)、浓度为横坐标(X)绘制贝母辛、贝母素甲和贝母素乙的标准曲线。结果见表 1。

表 1 3 种生物碱类成分的标准曲线回归结果及线性范围 Tab. 1 Standard curve regressions and linear ranges of three alkaloid ingredients

生物碱类	线性范围/ mg·mL ⁻¹	线性回归方程	R^2
贝母素甲	0.011 92~0.119 2	<i>Y</i> =1 343 067.8 <i>X</i> -16 382.0	0.999 0
贝母素乙	0.008 24~0.103 0	Y=826 936.5X-7 398.0	0.999 1
贝母辛	0.006 24~0.078 0	<i>Y</i> =8 539 559 <i>X</i> -5 383.7	0.999 2

2.2.4.2 仪器精密度试验 取浙贝母样品溶液 20 μL,按"2.2.1"项下色谱条件连续进样 5 次,以样品的峰面积为对象,计算贝母素甲和贝母素 乙及贝母辛的 RSD,分别为 1.46%, 2.31%, 1.74%,证明仪器精密度良好。

2.2.4.3 重复性试验 平行称取药材粉末 5 份,按 "2.2.2" 项下方法制备样品溶液,按 "2.2.1" 项下色谱条件测定有效成分贝母素甲、贝母素乙及贝母辛的含量,并计算得到贝母素甲、贝母素乙、贝母辛的 RSD 分别为 2.23%, 2.60%, 2.89%,表 明方法重复性良好。

2.2.4.4 稳定性试验 取供试品溶液,按"2.2.2"项下方法制得供试品溶液,分别在配制后 0,2,4,6,8,12,24 h按"2.2.1"项下色谱条件测定并记录峰面积,进样量 20 μL,得到贝母素甲、贝母素乙和贝母辛的 RSD 分别为 4.14%, 3.48%,2.44%。表明供试品溶液在 24 h 内稳定。

2.2.4.5 加样回收试验 分别精密称取贝母素甲

10 mg、贝母素乙 10 mg 和贝母辛 1 mg 对照品粉末,分别加入浓氨溶液 4 mL,浸润 30 min,置 100 mL 具塞锥形瓶中,精密加入用三氨甲烷:甲醇(4:1)的混合溶液 40 mL,得到相应浓度的贝母素甲、贝母素乙和贝母辛对照品溶液。按"2.2.2"项下方法制得样品溶液。按表 2 取相应样品质量的样品溶液,加入相应的贝母素甲、贝母素乙和贝母辛对照品质量的对照品溶液,每个质量平行 3 份,根据标准曲线计算平均回收率分别为 99.91%,100.14%,98.54%;RSD 分别为 3.05%,3.47%,3.05%。结果见表 2。

表 2 浙贝母中 3 种成分加样回收率试验结果

Tab. 2 Spiked recovery experiments with the three ingredients of *Fritillaria thunbergii* Miq.

生物碱类	样品含量/>	付照品加入	、测得量/	回收率/	平均回收	RSD/%
	mg	量/mg	mg	%	率/%	KSD/70
贝母素甲	1.025	0.8	1.786	0.98		
	1.025	0.8	1.757	0.96		
	1.025	0.8	1.887	1.03		
	1.025	1.0	2.032	1.00		
	1.025	1.0	1.951	0.96	99.91	3.05
	1.025	1.0	2.094	1.03		
	1.025	1.2	2.169	0.97		
	1.025	1.2	2.235	1.00		
	1.025	1.2	2.305	1.04		
贝母素乙	0.64	0.8	1.479	1.03		
	0.64	0.8	1.380	0.96		
	0.64	0.8	1.427	0.99		
	0.64	1.0	1.574	0.96		
	0.64	1.0	1.603	0.98	100.14	3.47
	0.64	1.0	1.685	1.03		
	0.64	1.2	1.844	1.00		
	0.64	1.2	1.960	1.07		
	0.64	1.2	1.849	1.01		
贝母辛	0.129	0.08	0.200	0.95	141	
	0.129	0.08	0.201	0.96		
	0.129	0.08	0.208	1.00		
	0.129	0.1	0.218	0.95		
	0.129	0.1	0.238	1.04	98.54	3.05
	0.129	0.1	0.222	0.97		
	0.129	0.12	0.251	1.01		
	0.129	0.12	0.251	1.01		
	0.129	0.12	0.243	0.98		

2.2.5 不同遮阴下浙贝母中贝母素甲、贝母素乙和贝母辛含量 取不同遮荫处理下的浙贝母,按"2.2.2"项下方法制备样品溶液,并测定贝母甲素、贝母素乙和贝母辛含量。与无遮阴对照组相比,贝母素甲、贝母素乙、贝母辛含量存在显著差异(P<0.05);随着遮阴程度的增加,生物碱含量呈现"高-低-高"的变化趋势,各处理中以T3处理含量最高,T2处理含最低,其大小顺序为

T3>CK>T1>T2。结果表明遮阴对浙贝母中指标性成分生物碱含量存在影响,但并不是简单的正相关关系。结果见表 3、图 6。

表 3 不同遮阴下浙贝母中贝母素甲、贝母素乙和贝母辛 含量

Tab. 3 Peimine, peiminine and peimisine concentrations in *Fritillaria thunbergii* Miq. after different shading treatments

				mg·g ⁻¹
组别	贝母甲素	贝母乙素	贝母辛	总量
CK	0.718 3	0.349 1	0.152 0	1.219 3
	0.738 0	0.363 6	0.160 1	1.261 6
	0.757 1	0.370 6	0.161 2	1.289 0
T1	0.590 4	0.254 3	0.133 3	0.977 9
	0.567 2	0.240 6	0.132 5	0.940 4
	0.623 8	0.259 9	0.153 1	1.036 8
T2	0.544 4	0.263 9	0.124 0	0.932 3
	0.572 0	0.283 9	0.136 6	0.992 6
	0.569 4	0.286 5	0.131 5	0.987 3
Т3	1.428 0	0.449 9	0.271 1	2.148 9
	1.155 0	0.414 3	0.267 8	1.837 1
	1.081 4	0.435 6	0.274 9	1.791 9

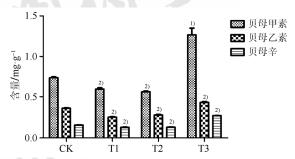


图 6 不同遮阴对浙贝母中贝母素甲、贝母素乙和贝母辛含量的影响

与 CK 组比较, 1)P<0.05, 2)P<0.01。

Fig. 6 Effects on peimine, peiminine and peimisine concentrations in *Fritillaria thunbergii* Miq. after different shading treatments

Compared with the CK group, ${}^{1)}P < 0.05$, ${}^{2)}P < 0.01$.

2.3 不同遮阴下浙贝母相对生物量的测定

采集长势良好、不同遮阴下的 50 株浙贝母,按五点法(即对角线法)进行采集。测定时将浙贝母鳞茎样品去除表面泥土,然后用万分之一的电子分析天平称取重量。结果见图 7。

由图 7 可以看出,随着遮阴程度的增加,药用部分(鳞茎)的生物量呈现"低-高-低"的变化趋势,各处理中以 T2 处理生物量最高,T3 处理生物量最低,其大小顺序为 T2>CK>T1>T3。经方差分析,与 CK 组比,T3 组有显著性差异(P<0.05),T1、T2组无明显差异。以上结果说明,适度遮阴并不会严重影响浙贝母的产量,但当遮阴度达到 95%时,会

严重影响产量,可以使产量下降50%以上。

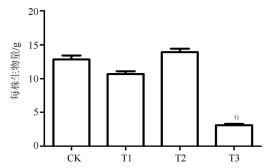


图 7 遮阴对浙贝母药材生物量的影响与 CK 组比较, ¹⁾P<0.01。

Fig. 7 Effects of shading on biomass of *Fritillaria thunbergii* Miq. medicinal materials Compared with the CK group, ¹⁾*P*<0.01.

3 分析与讨论

太阳光是植物光合作用的能量来源之一,遮 阴可以降低光强,通常会不同程度地降低植物光 合速率, 光合作用是构成植物生产力的最主要因 素,影响植物光合作用的因素有很多,如品种、 冠层发育、叶龄、气温、光强、空气湿度、CO₂ 浓度等[3], 其中光照是光合作用强弱的主要决定因 素[4]。本研究发现,随着 PAR 的增强,不同遮阴 度浙贝母的光合速率均呈现不同幅度的增大,表 明阴影可以不同程度影响浙贝母的光合速率。与 T1 和 T2 处理组相比, CK、T3 处理组在强光下表 现出明显的光抑制现象,表明适度的遮阴(遮阴度 50%~75%)可以增大浙贝母的净光合速率,有利于 其光合作用的进行。植物的气孔是光合作用 CO₂ 进入和水分散失的主要通道, 气孔导度的变化直 接影响光合作用和蒸腾作用[5],本试验结果显示不 同遮阴下浙贝母的气孔导度变化规律与蒸腾速率 的变化规律极度相似。

光是浙贝母通过光合作用制造有机物的重要能量来源之一,并在形态建成、物质积累等方面对植株的生长发育产生巨大影响。对中药材而言,人们关心的是次生代谢产物的合成与积累。而次生代谢是建立在初生代谢的基础之上,初生代谢为次生代谢提供能量与基本物质骨架。因此,光照不仅影响着初生代谢,同时也会对次生代谢产生影响。通过各小组内不同光照强度下的浙贝母鳞茎生物碱含量的检测,可以得出不同遮阴度条件下,各小组浙贝母生物碱含量存在明显差异。从浙贝母鳞茎中生物碱总量上 T3>CK>T1>T2,均大于药典所规定的 0.08%,即 95%遮阴下的浙贝母

生物碱含量大于自然光、50%遮阴和75%遮阴,本实验结果表明适度遮阴可能会降低生物碱含量,而过度遮阴反而会提高生物碱含量,因此,遮阴度与生物碱含量之间的相关性有待进一步探究。

通过各小组内不同光照强度下浙贝母生物量的检测,对所得 50 株浙贝母鳞茎产量进行分析。当遮阴度达到 95%时,会严重影响其产量。有相关文献报道随着遮阴度增加对小粒咖啡^[6]产量也呈现了低-高-低的趋势,而冬小麦^[7]、绿岭核桃^[8]等的产量则随着遮阴度增加而逐步降低,因此遮阴度与浙贝母产量之间的关系需要更进一步的探究。

本试验完成了不同光照强度下,浙贝母的光响应曲线、生物碱含量、生物量等的测定。通过分析发现光照强度对浙贝母的光合作用、生物量累积、生物碱含量有明显影响。75%遮阴条件下,有助于增大浙贝母的净光合速率,有利于其光合作用的进行。95%遮阴条件下,严重影响浙贝母生物量的累积。遮阴度与生物碱两者之间并不完全正相关。这对浙贝母的种植及揭示浙贝母生物学特性具有一定的指导意义。

REFERENCES

- [1] TAKEISHI H, HAYASHI J, OKAZAWA A, etal. Effects of elevated pressure on rate of photosynthesis during plant growth [J]. J Biotechnol, 2013, 168(2): 135-141.
- [2] WANG L W, SHEN C W, ZHANG S L, et al. Effects of different processing methods on the contents of 3 alkaloids in *Fritillaria Thunbergii* Bulbus [J]. Chin J Mod Appl Pharm(中国现代应用药学), 2018, 35(1): 80-84.
- [3] CUI X T, YUAN F H, WANG A Z, et al. Leaf age-related changes in photosynthesis of Quercus mongolica leaves in relation to leaf functional traits [J]. Chin J Ecolog(生态学杂志), 2017, 36(11): 3160-3167.
- [4] NOWICKA B, KRUK J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution [J]. Microbiol Res, 2016, 186/187: 99-118.
- [5] WANG H Z, HAN L, XU Y L, et al. Model analysis of the stomatal conductance response to light in populus pruinosa at different temperatures in the taklimakan desert [J]. Ecol Environ Sci(生态环境学报), 2015, 24(5): 741-748.
- [6] QI Y T, LIU X G, YU X D, et al. Effects of limited irrigation and shading on growth, photosynthesis and yield of *Coffea arabica* in dry-hot area [J]. J Drain Irrigat Machin Eng(排灌机 械工程学报), 2017, 35(9): 820-828.
- [7] AIZIZI J, CUI Y, ZHAO Q, et al. Effets of shading and nitrogen fertilizer on the poulation growth dynamics and yield of winter wheat [J]. Xinjiang Agri Sci (新疆农业科学), 2017, 54(5): 785-794
- [8] LIANG M M, LI H, LI H, et al. Effects of shading treatments on quality and yield in 'Lvling' walnut [J]. Nonwood Forest Res(经济林研究), 2017, 35(3): 174-178.

收稿日期: 2018-01-19 (本文责编: 李艳芳)