- [28] GUO J F, OGIER J R, DESGRANGES S, et al. Anisamidetargeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice [J]. Biomaterials, 2012, 33(31): 7775-7784.
- [29] HAN S E, KANG H, SHIM G Y, et al. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA [J]. Int J Pharm, 2008, 353(1/2): 260-269.
- [30] BEYERLE A, BRAUN A, BANERJEE A, et al. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice [J]. Biomaterials, 2011, 32(33): 8694-8701.
- [31] NAFEE N, TAETZ S, SCHNEIDER M, et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides [J]. Nanomedicine, 2007, 3(3): 173-183.
- [32] KATAS H, CEVHER E, ALPAR H O. Preparation of polyethyleneimine incorporated poly(*D*, *L*-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery [J]. Int J Pharm, 2009, 369(1/2): 144-154.
- [33] TARATULA O, GARBUZENKO O B, KIRKPATRICK P, et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery [J]. J Control Release, 2009, 140(3): 284-293.
- [34] DAVIDSON T J, HAREL S, ARBOLEDA V A, et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation [J]. Neurosci, 2004, 24(45): 10040-10046.

稀有放线菌产生抗菌药物的多样性

李子强, 贾云宏, 杨殿深(辽宁医学院药学院, 辽宁 锦州 121001)

摘要:目的 对稀有放线菌产生抗菌药物的结构类型和生物活性作一综述,提供有关稀有放线菌研究的借鉴资料。方法 查阅近10多年来国内外公开发表的有关稀有放线菌产生抗菌药物的相关文献,对其产生抗菌药物的结构及生物活性进行 论述。结果 稀有放线菌产生的抗菌药物具有结构多样及活性独特的特点,主要有14种结构类型。结论 稀有放线菌是 新生物活性物质的重要产生菌,本文为今后稀有放线菌的进一步研究提供了参考。

关键词:稀有放线菌;抗菌药物结构多样性;生物活性

中图分类号: R978.1 文献标志码: A 文章编号: 1007-7693(2013)12-1373-12

Diversity of Antibiotics from Rare Actinomycetes

LI Ziqiang, JIA Yunhong, YANG Dianshen(Liaoning Medical University, Jinzhou 121001, China)

ABSTRACT OBJECTIVE To summarize the structure types and bioactivities of antibiotics from rare streptomyces, and provide reference information for further research. **METHODS** Based on the over ten years' research literatures of antibiotics from rare streptomyces domestic and abroad, chemical constituents and bioactivities were reviewed. **RESULTS** Antibiotics from rare actinomycetes had characteristics of diverse structures and unique bioactivity, constituted mainly by 14 structure types. **CONCLUSIONS** Rare actinomycetes are important producers for novel bioactive compounds. The review can provide the evidence for the further study on the research of rare streptomyces.

KEY WORDS: rare actinomycetes; the structural diversities of antibiotics; bioactivities

Chin JMAP, 2013 December, Vol.30 No.12 • 1

- [35] SIMEONI F, MORRIS M C, HEITZ F, et al. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells [J]. Nucleic Acids Res, 2003, 31(11): 2717-2724.
- [36] GAO J, LIU W, XIA Y, et al. The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by Immunoliposomes [J]. Biomaterials, 2011, 32(13): 3459-3470.
- [37] DASSIE J P, LIU X Y, THOMAS G S, et al. Systemic administration of optimized aptamer–siRNA chimeras promotes regression of PSMAexpressing tumors [J]. Nat Biotechnol, 2009, 27(9): 839-849.
- [38] KLEINMAN M E, YAMADA K, TAKEDA A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 [J]. Nature, 2008, 452(7187): 591-597.
- [39] DAVIS M E, ZUCKERMAN J E, CHOI C H, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles [J]. Nature, 2010, 464(7291): 1067-1070.
- [40] ALEKU M, SCHULZ P, KEIL O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression [J]. Cancer Res, 2008, 68(23): 9788-9798.
- [41] DEVINCENZO J, CEHELSKY J E, ALVAREZ R, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALNRSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus(RSV) [J]. Antiviral Res, 2008, 77(3): 225-231.

收稿日期: 2013-03-25

作者简介: 李子强, 男, 硕士, 讲师 Tel: 18841697152 E-mail: lzq19782004@163.com

由于从链霉菌中发现新抗菌药物的几率越来 越小,从稀有放线菌中寻找新抗菌药物成为研究的 重点。稀有放线菌通常是指那些使用常规的分离方 法时较链霉菌的出菌率低很多的放线菌属。稀有放 线菌主要包括小单孢菌属(Micromonospora)、诺卡 菌属(Nocardia)、马杜拉放线菌属(Actinomadura)、 游动放线菌属(Actinoplanes)、拟无枝菌酸菌属 (Amycolatopsis)、小双孢菌属(Microbispora)、糖多 孢菌属(Saccharopolyspora)等菌属。稀有放线菌是 新生物活性物质的重要产生菌,其产生的抗菌药 物具有结构多样及活性独特的特点。自发现链霉 素以来,已从放线菌中发现了大量的抗菌药物, 其中链霉菌是主要产生菌^[1]。稀有放线菌作为新抗 菌药物来源的作用变得越来越重要,稀有放线菌 产生的一些抗菌药物如庆大霉素、红霉素、万古 霉素、利福平等已成功应用于临床^[2]。2008 年李 一青等对不同稀有放线菌产生抗菌药物的种类和 其活性进行了概述^[3],随着近几年新抗菌药物的发 现,本文对稀有放线菌产生抗菌药物的结构类型 及其活性进行了论述,主要有大环内酯类、蒽环 类、氧杂蒽酮类、聚酮类、生物碱、氨基糖苷类、 安莎类、寡糖类、肽类和核苷类等。

1 大环内酯类抗菌药物

2003年 Laakso 等^[4]从小单孢菌属发现的大环 内酯类抗菌药物 R176502, 具有抗肿瘤活性, 它能 在纳摩尔浓度范围内抑制多种肿瘤细胞,其结构 见图 1。Okujo 等^[5]最近报道了从小双孢菌 A34030 的菌丝体中分离到新 20 元大环二内脂 bispolides 系列化合物,该系列化合物对革兰阳性细菌,尤 其对耐甲氧西林金黄色葡萄球菌(MRSA)有较好 的体外抑制活性,其结构见图 2。Petkovic 等^[6]报 道了所构建的糖多孢菌属基因工程菌株 Saccharopolyspora erythrarea JC2/pHP020 能产生 大环内酯类抗菌药物 6-去甲基红霉素 D (6-desmethyl erythromycin D), 它的抗菌活性与红 霉素 D(erythromycin D)相当, 其结构见图 3。2010 年 Yojiro 等^[7]从小单孢菌属 rosaria 发现 rosamicin 的 2 个类似物 IZII 和 IZIII, 对 Staphylococcus aureus ATCC 25923, Micrococcus luteus ATCC 9341, Salmonella enterica serovar Typhimurium ATCC 14028 和 E. coli ATCC 25922 都有一定抑制 作用,其结构见图4。在稀有放线菌次生代谢产物 中此类抗菌药物是一类比较常见和重要的化合物,

图1 R176502的分子结构

Fig 2 The molecular structure of bispolides

图 3 6-Desmethyl erythromycin D 的分子结构 Fig 3 The molecular structure of 6-desmethyl erythromycin D

图4 IZII 和 IZIII 的分子结构

Fig 4 The molecular structure of IZII and IZIII

并且具有较强的抗菌和抗肿瘤活性,是研究重点 之一,近几年从小单孢菌属发现较多。

2 蒽醌类抗菌药物

2004年 Yang 等^[8]从小单孢菌属发现蒽环类抗 菌药物 micromonomycin 具有抗细菌(如金黄色葡 萄球菌、肺炎链球菌和超敏感大肠埃希菌)及弱抗 真菌活性,其结构见图 5。Kosinostatin 具有抗肿 瘤活性及抗革兰阳性细菌、中度抗革兰阴性细菌 和抗某些酵母菌活性^[9],结构见图 6。孙承航等^[10] 最近报道从一株地中海诺卡菌康乐变种菌株中分 离得到抗菌药物 chemomicin A, 其除了对革兰阳 性细菌、枯草芽孢杆菌及粪肠球菌有抑制作用外, 对人结肠癌及食管癌细胞也有体外细胞毒活性, 其结构见图 7。2007 年 Yasuhiro 等^[11]从小单孢菌 属 lupini 发现 2 个新的蒽醌类化合物 Lupinacidins A和B,对鼠结肠26-L5 癌细胞具有抑制作用,其 结构见图 8。由 Microbispora roseasub sp. Hibaria 菌 株产生的抗菌药物 hibarimicins 和 hibarimicinone, 其中 hibarimicin B 能诱导人髓系白血病 HL-60 细 胞的分化且选择性抑制 v-Src 蛋白酪氨酸激酶; hibarimicin E 能诱导 HL-60 细胞分化但不抑制 v-Src 蛋白酪氨酸激酶,其结构见图 9。 Hibarimicinone 虽然抑制 v-Src 蛋白酪氨酸激酶选 择性低,且不诱导 HL-60 细胞的分化,但它是最 有效的 v-Src 蛋白酪氨酸激酶抑制剂^[12]。蒽醌类抗 菌药物大多数具有较强的抗肿瘤活性,是一类重 要的抗肿瘤抗菌药物。例如已经上市的柔红霉素 和阿霉素等。

- 图 5 Micromonomycin 的分子结构
- Fig 5 The molecular structure of micromonomycin

图 6 Kosinostatin 的分子结构 Fig 6 The molecular structure of Kosinostatin

图 7 Chemomicin A 的分子结构

Fig 7 The molecular structure of chemomicin A

- 图 8 Lupinacidins 的分子结构
- Fig 8 The molecular structure of Lupinacidins

Chin JMAP, 2013 December, Vol.30 No.12

·1375 ·

中国现代应用药学 2013 年 12 月第 30 卷第 12 期

图 9 Hibarimicins 和 hibarimicinone 的分子结构 Fig 9 The molecular structure of hibarimicins and hibarimicinone

3 苯醌类抗菌药物

Wang 等^[13]从小单孢菌属 *Micromonospora* sp. IM 2670 分离得到 Streptonigrin 和它的一个新的自 然衍化物 7-(1-methyl-2-oxopropyl)streptonigrin 对 人类的神经细胞瘤 SH-SY5Y(包含野生型 p53)有 较强的作用,其结构见图 10。在稀有放线菌次生 代谢产物中苯醌类抗菌药物还是比较少见的,经 常在安莎类结构中出现。

4 萘醌类抗菌药物

Fukami 等^[14]首次从稀有放线菌 Actinoplanes capillaceus sp. K95-5561T 中分离到已知合成化合 物 2-hydroxyethyl-3-methyl-1,4-naphthoquinone,并 首次报道了该化合物具有抗某些革兰阳性细菌的 活性,其结构见图 11。Zhang 等^[15]首次从 Actinoplanes ISO06811 中分离得到一个异呋喃萘 醌化合物 7,8-dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione,并报道该化合物具有抗枯草芽孢杆菌和 大肠杆菌的活性,其结构见图 12。这类结构也经 常在萘醌型安莎类抗菌药物出现,近几年从游动 放线菌代谢产物中发现较多。

7-(1-methyl-2-oxopropyl)streptonigrin

图 10 Streptonigrin 和 7-(1-methyl-2-oxopropyl)streptonigrin 的分子结构

Fig 10 The molecular structure of Streptonigrin and 7-(1-methyl-2-oxopropyl)streptonigrin

图 11 2-Hydroxyethyl-3-methyl 1,4-naphthoquinone 的分子 结构

Fig 11 The molecular structure of 2-hydroxyethyl-3-methyl 1,4-naphthoquinone

图 12 7,8-Dihydroxy-1-methylnaphtho[2,3-c]furan-4,9-dione 分子结构

Fig 12 The molecular structure of 7,8-dihydroxy-1-methyln-aphtho[2,3-c]furan-4,9-dione

5 氧杂蒽酮类抗菌药物

氧杂蒽酮类抗菌药物 retymicin 具有抑制胃腺 癌(HM02)、肝癌(HepG2)细胞生长的作用^[16],其 结构见图 13。由马杜拉放线菌产生的抗菌药物 IB-00208 对革兰阳性细菌及肿瘤细胞有体外抑制 作用^[17],其结构见图 14。由拟无枝酸菌 ML630mF1 菌株产生的抗菌药物 kigamicin A~E 能抑制包 括耐甲氧西林金黄色葡萄球菌(MRSA)在内的革 兰阳性细菌, kigamicin A~D 能在较低浓度下抑制 营养饥饿条件下培养的PANC-1 癌细胞,kigamicin D 抑制各种鼠肿瘤细胞生长的 IC₅₀ 约为 1 μg·mL^{-1[18]}, 其结构见图 15。氧杂蒽酮类抗菌药物是由 II 型聚 酮合酶合成的一类具有广泛生物活性的化合物,特 别是在抗肿瘤方面的作用引起了广泛的关注。

图 13 Retymicin 的分子结构 Fig 13 The molecular structure of retymicin

图 14 IB-00208 的分子结构

Fig 14 The molecular structure of IB-00208

图 15 Kigamicin A~E 的分子结构

Fig 15 The molecular structure of kigamicin A–E

6 聚酮类抗菌药物

Banskota 等^[19]2006 年报道了通过基因分析, 从产万古霉素的东方拟无枝菌酸菌(*Amycolatopsis* orientalis)ATCC43491 中培养得到了新抗菌药物

中国现代应用药学 2013 年 12 月第 30 卷第 12 期

ECO-05019,该抗菌药物对耐甲氧西林金黄色葡萄 球菌(MRSA)及耐万古霉素肠球菌(VRE)在内的革 兰阳性致病菌有较强的抑制作用,其结构见图 16。 Philip 等^[20]从海洋 Salinispora arenicola 分离得到 2 个二环聚酮类化合物 saliniketals A 和 B, 两者能够 抑制鸟氨酸脱羧酶(预防癌症的一个重要靶点)的 诱导, IC₅₀分别为(1.95±0.37)和(7.83±1.2)µg·mL⁻¹, 其结构见图 17。Philip 等^[21]从海洋 Salinispora arenicola 分离得到 3 个聚酮类化合物 arenicolides A~C, 其中 arenicolides A 对人类结肠腺癌细胞的 细胞毒作用 IC₅₀ 为 30 μg·mL⁻¹,其结构见图 18。 聚酮类化合物是功能和结构最多样化的天然产物 之一,总体它可以分为两大类:芳香族聚酮化合 物和复合聚酮化合物。前者是乙酸通过缩合(起始 单位除外)形成的大部分β酮基在酰基链的延伸和 完成后都一直保持非还原状态,经过折叠和醇醛 缩合形成六元环, 芳香环随后被脱水还原, 如放 线紫红素、四环素。复合聚酮化合物比芳香族聚 酮化合物在结构变化上大的多,其构成单位有乙 酸、丙酸和丁酸等,而且由于与芳香族聚酮化合 物在合成化学、β酮基还原过程、侧链的空间位阻 上的本质差别,许多不经过折叠和芳香化,而是 通过内酯化成环,还有一部分仍保持酰基链,如 大环内酯抗菌药物红霉素和螺旋霉素、抗真菌抗 菌药物雷帕霉素、聚醚类抗菌药物莫能霉素和南 昌霉素、抗寄生虫抗菌药物 avermectin 等。

图 16 ECO-05019 的分子结构 Fig 16 The molecular structure of ECO-05019

- 图 17 Saliniketals A~B 的分子结构
- **Fig 17** The molecular structure of saliniketals A~B

Chin JMAP, 2013 December, Vol.30 No.12 • 1377 •

图 18 Arenicolides A~C 的分子结构 Fig 18 The molecular structure of arenicolides A~C

7 生物碱类抗菌药物

Diazepinomicin 是从海洋小单孢菌株 DPJ12中 分离得到的生物碱类抗菌药物,其对某些革兰阳 性细菌有中度抑制作用^[22],其结构见图 19。2006 年 Ivanova 等^[23]从一株充气小双胞菌 IMBAS-11A 分离得到一个含硫的吲哚类生物碱 microbiaeratin 和已知的 microbiaeratinin,其中 microbiaeratin 对 鼠成纤维细胞 L-929 和人白细胞 K-562 的 GI₅₀> 50 µg·mL⁻¹,对人类宫颈癌 HeLa 的 CC₅₀>50 µg·mL⁻¹, 但是对 *Bacillus subtilis*, *Staphylococcus aureus*, *Streptomyces viri-dochromo-genes*, *Escherichia coli*, *Candidaalbicans* 和 *Mucor miehei* 50 µg/disc 未显示 抑菌活力^[23]。生物碱类抗菌药物多产于海洋稀有 放线菌,大部分衍生为聚酮类、二酮哌嗪类,吩 噻嗪类抗菌药物。

8 氨基糖苷类抗菌药物

由指状孢囊菌属(Dactylosporangium)SF-2052 菌株产生的氨基糖苷类抗菌药物 dactimicin^[24]和 阿司米星相比在对庆大霉素耐药的葡萄球菌和沙 雷菌有较强的活性^[25],其结构见图 20。此类抗菌 药物除了链霉菌外,主要由小单孢菌产生比较多, 近年来文献报道的比较少。

图 19 Diazepinomicin 的分子结构 Fig 19 The molecular structure of diazepinomicin

图 20 Dactimicin 的分子结构 Fig 20 The molecular structure of dactimicin

9 二烯糖苷类抗菌药物

Oh 等^[26]从 Salinispora pacifica 中分离到 2 个 环戊二烯茚[a]糖苷类化合物 cyanosporasides A 和 B, 对人类结肠癌细胞 HCT-116 的 IC₅₀ 为 30 μg·mL⁻¹, 但是对 methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium 和 amphotericin-resistant Candida albicans 未见活性, 其结构见图 21。此类抗菌药物比较少见,但是抗 肿瘤作用较强。

图 21 cyanosporasides A~B 的分子结构

Fig 21 The molecular structure of cyanosporasides A–B

10 核苷类抗菌药物

2007 年 Murakami 等^[27]从一株拟无枝菌酸菌 SANK 60206 发现一个细菌转移酶 I 抑制剂 A-102395, IC₅₀为11 nmol·L⁻¹,其结构见图 22。由 稀有放线菌产生的核苷类抗菌药物近年来报道较少。

图 22 A-102395 的分子结构 Fig 22 The molecular structure of A-10239,

11 寡糖类抗菌药物

从菌株 Micromonospora carbonacea var. africana 的发酵液中分离得到的 Sch58769 等 5 个新寡糖类 化合物,据报道其中 4 个具有抗金黄色葡萄球菌 活性^[28],其结构见图 23。属于结构比较少见的抗 菌药物之一。

图 23 Sch 58769、Sch 58771、Sch 58773 和 Sch 58775 的分子结构

Fig 23 The molecular structure of Sch 58769, Sch 58771, Sch 58773 and Sch 58775

12 肽类抗菌药物

由诺卡菌 WW-12651 菌株产生的肽类抗菌药 物 nocathiacins 具有体外广谱抗革兰阳性细菌活 性,包括对一些具有多重抗药性的致病菌如金黄 色葡萄球菌、粪肠球菌及肺炎链球菌均有很强的 抑制作用,对感染金黄色葡萄球菌的小鼠也有很

中国现代应用药学 2013 年 12 月第 30 卷第 12 期

好的体内疗效^[29],其结构见图 24。2000 年 Vértesv 等^[30]报道的从菌株 Actinoplanes friuliensis sp.nov. 中分离到能抑制肽聚糖合成的肽类抗菌药物 Friulimicins, 其结构见图 25。2003 年 Ismaela 等^[31] 从一株马杜拉放线菌株分离到七肽类抗菌药物 GE23077A₁, A₂, B₁和 B₂, GE23077 复合体对 Escharichia coli 和 Bacillus subtilis 的 RNA 聚合酶 IC₅₀为 0.02 µg·mL⁻¹(25 nmol·L⁻¹)。GE23077 各个 部分 A₁, A₂, B₁和 B₂对 Escharichia coli 的 RNA 聚合酶 IC50分别为 0.15, 0.035, 0.1 和 0.02 µg·mL⁻¹, 其结构见图 26。2012 年李子强等从 Actinoplanes sp. PDF-1 分离得到抗多种耐药菌株的多肽类抗菌药 物诺西肽,为诺西肽这一重要的噻唑肽类抗菌药 物的开发提供了新的资源^[32],其结构见图 27。肽 类抗菌药物药理作用一般比较强,但是很多由于 溶解性和药物代谢比较差,限制了应用。游动放 线菌是一个重要产生菌。

13 异色满醌类抗菌药物

由小单孢菌 SA-246 菌株产生的异色满醌类抗 菌药物 GTPI-BB 具有强抑制肿瘤细胞活性及抗革 兰阳性细菌活性^[33],结构见图 28。2 年后由此菌 又分离得到 9-hydroxy-crisamicin A,可以激活乙肝 病毒(HBV)的复制^[34],结构见图 29。此类抗菌药 物也比较少见,产生菌也较少见。

图 24 Nocathiacins 的分子结构

Fig 24 The molecular structure of nocathiacins

Chin JMAP, 2013 December, Vol.30 No.12

·1379·

图 26 GE23077 的分子结构 Fig 26 The molecular structure of GE23077

图 27 Nosheotide 的分子结构 Fig 27 The molecular structure of Nosheotide

图 28 GTPI-BB 的分子结构 Fig 28 The molecular structure of GTPI-BB

图 29 9-Hydroxy-Crisamicin A 的分子结构

Fig 29 The molecular structure of 9-hydroxy-crisamicin A

14 二酮哌嗪类抗菌药物

2004 年 Yang 等^[35]从 *Micromonospora* sp.中发现一个新的二酮哌嗪类抗菌药物 Sch 725418 具有抑制超敏感真菌 PM503 的活性,结构见图 30。在海洋微生物次生代谢产物中比较常见,常具有显著的生物活性。

图 30 Sch 725418 的分子结构 Fig 30 The molecular structure of Sch 725418

15 吩噁嗪类抗菌药物

由海洋马杜拉放线菌 M048 菌株产生的含吩 噁嗪-3-酮骨架的抗菌药物 chandrananimycins A~C,它们都具有抗结肠癌(CCLHT29)、黑瘤 (MEXF 514L)、肺癌(LXFA 526L、LXFL 529L)、 乳腺癌(MACL MCF-7)等肿瘤细胞的活性,此外 chandrananimycins C 还具有强抗细菌、真菌及藻 类活性^[36],结构见图 31。近几年文献报道较少, 属于少见的抗菌药物类型。

图 31 Chandrananimycins 的分子结构

Fig 31 The molecular structure of chandrananimycins

16 安莎类抗菌药物

Wijittra 等^[37]从小单孢菌属 *Micromonospora* sp. PC4-3 中分离得到 geldanamycin 和 17-Odemethylgeldanamyciz, 对金黄色葡萄球菌 *S. aureus* ATCC 25923 和白色念珠菌 *C. albicans* ATCC 10231 具有抗菌活性,结构见图 32~33。 Huang 等^[38]从小单孢菌属 *Micromonospora rifamycinica* 中分离得到 rifamycin S 和它的几何异 构体,对 G⁺(包括 MRSA)有抑制作用,结构见图 34。近几年这类新的结构发现不多,但是抗菌和 抗肿瘤活性比较强,例如已经开发的利福霉素和 格尔德霉素等。

图 32 Geldanamycin 的分子结构 Fig 32 The molecular structure of geldanamycin

图 33 17-O-Demethylgeldanamycin 的分子结构 Fig 33 The molecular structure of 17-O-demethylgeldanamy-Cin

17 萜类化合物

Masato 等^[39]从 Verrucosispora gifhornensis YM28-088 中分离得到 2 个二萜化合物 gifhornenolones A 和 B,其中 gifhornenolones A 对 雄激素受体的抑制活性 IC₅₀为 2.8 μg·mL⁻¹,结构 见图 35~36。在稀有放线菌代谢产物中比较少见, 但是活性值得注意。

图 34 Rifamycin S 的分子结构 Fig 34 The molecular structure of rifamycin S

图 36 Gifhornenolones B 的分子结构 Fig 36 The molecular structure of gifhornenolones B

18 小环内酯类抗菌药物

Robert 等^[40]从 Salinispora strain 分离得到一 个细胞毒性蛋白酶抑制剂 Salinosporamide A 对人 类结肠癌细胞毒活性 IC₅₀ 为 11 ng·mL⁻¹,对 NCI 的 60 株肿瘤细胞具有较好的活性和选择性,结构 见图 37。与大环内酯类抗菌药物相比,此类结构 较少见。

图 37 Salinosporamide A 的分子结构 Fig 37 The molecular structure of Salinosporamide A

19 含有水杨酸基团的抗菌药物

Hoshino 研究组曾报道从菌株 Nocardia transvalensis IFM 10065 中分离得到络合锌的噻唑 烷抗菌药物 transvalencin A,其对某些真菌如须癣 毛癣菌(Trichophyton mentagrophytes)、新型隐球酵 母菌(Cryptococcus neoformans)等具有抑制活性^[41], 结构见图 38。2 年后该研究组又从该菌株中分离 到对革兰阳性细菌,特别是对一些耐酸菌如 Coryne-bacterium xerosis、Gordonia branchialis 及 Mycobacterium smegmatis 有强抑制作用的含有水 杨酸残基的抗菌药物 transvalencin Z^[42],结构见图 39。抗肿瘤抗菌药物如由 Nocardia asteroides IFM 0959 菌株产生的含有水杨酸基团的抗菌药物 asterobactin, 在 0.2~3.2 µg·mL⁻¹ 内具有体外抑制 HeLa、HL-60 肿瘤细胞的活性^[43],结构见图 40。 由致病 Actinomadura madurae IFM 0745 菌株产生 的抗菌药物 madurastatin A1 和 madurastatin B1 具有 抗藤黄微球菌的活性^[44],结构见图 41。水杨酸 是很常见的微生物代谢产物,在适当条件下可以 与一些含羟基或氨基的代谢产物反应生成酯或 者酰胺。

图 39 Transvalencin Z 的分子结构 Fig 39 The molecular structure of transvalencin Z

图 41 Madurastatin A1 的分子结构 Fig 41 The molecular structure of madurastatin A1

20 展望

稀有放线菌产生的抗菌药物结构多样化,并 且能产生一些独特的结构,目前,已从稀有放线 菌中发现了2500多种抗菌药物,其中产生的一些 抗菌药物如庆大霉素、红霉素、万古霉素、利福 平等已成功应用于临床^[2]。近些年来从小单孢菌发 现的新抗菌药物相对较多,海洋稀有放线菌产生 的抗菌药物结构多样,活性独特,开发潜力巨大, 是未来研发的一个重要方向。所以,一方面,需 要加强从稀有放线菌发现新抗菌药物,另一方面, 目前研发的新药也大多为已知抗菌药物的衍生 物,其在作用机制、抗菌谱、抗菌活性以及药动 学等方面难有重大突破,而高风险和长周期等决 定了新药开发将愈加困难。因此,优化抗菌药物 的的治疗策略以延长其临床使用寿命是应对目前 临床窘境的另一种重要途径。 尽管新的种、属不断被发现,但据估计,目前分离到的放线菌种类,仅为实际存在种类0.1%~1%。因此,放线菌还有极其丰富多样的未知种群等待人们去发现^[45]。如日本 Takahashi 等^[46]报道,从不同的环境,利用特殊的分离方法分离到放线菌的新种、新属,并从这些放线菌发酵产物中得到许多新结构的活性物质。

REFERENCES

- [1] ZHANG Z P. Microbial Pharmaceuticals(微生物药物学) [M]. Beijing: Chemical Industry Press, 2003: 5.
- [2] LAZZARINI A, CAVALETTI L, TOPPO G, et al. Rare genera of actinomycetes as potential producers of new antibiotics [J]. Antonie Van Leeuwenhoek, 2000, 78(3/4): 399-405.
- [3] LIYQ,LIYQ,LIMG, et al. Antibiotics produced by rare actinomycetes [J]. Chin J Antibiotic(中国抗生素杂志), 2008, 33(4): 193-197.
- [4] LAAKSO J A, MOCEK U M, DUN J V, et al. R176502, a new bafilolide metabolite with potent antiproliferative activity from a novel *Micromonospora* species [J]. J Antibiot, 2003, 56(11): 909-916.
- [5] OKUJO N, IINUMA H, GEORGE A, et al. Bispolides, novel 20 membered ring macrodiolide antibiotics from *Microbispora* [J]. J Antibiot, 2007, 60(3): 216-219.
- [6] PETKOVIC H, LILL R E, SHERIDAN R M, et al. A novel erythromycin, 6-desmethyl erythromycin D, made by substituting an acyltransferase domain of the erythromycin polyketide synthase [J]. J Antibiot, 2003, 56(6): 543-551.
- [7] YOJIRO A, AYAMI S, WEI L, et al. Isolation and characterization of 23-O-mycinosyl-20-dihydro-rosamicin: a new rosamicin analogue derived from engineered *Micromonospora rosaria* [J]. J Antibiot, 2010, 63(6): 325-328.
- [8] YANG S W, CHAN T M, TERRACCIANO J, et al. A new anthracycline antibiotic micromonomycin from *Micromonospora* sp. [J]. J Antibiot, 2004, 57(9): 601-604.
- [9] FURUMAI T, IGARASHI Y, HIGUCHI H, et al. Kosinostatin, a quinocycline antibiotic with antitumor activity from *Micromonospora* sp. TP-A0468 [J]. J Antibiot, 2002, 55(2): 128-133.
- [10] SUN C H, WANG Y, WANG Z, et al. Chemomicin A, a new Angucyclinone antibiotic produced by *Nocardia mediterranei* subsp. *kanglensis* 1747-64 [J]. J Antibiot, 2007, 60(3): 211-215.
- [11] YASUHIRO I, MARTHA E T, EUSTOQUIO M M, et al. anthraqu inones from an endophytic actinomycete *Micromonospora lupini* sp. nov. [J]. Bioorg Med Chem Lett, 2007, 17(13): 3702-3705.
- [12] CHO S I, FUKAZAWA H, HONMA Y, et al. Effects of hibarimicins and hibarimicin related compounds produced by *Microbispora* on v-Src kinase activity and growth and differentiation of human myeloid leukemia HL-60 cells [J]. J Antibiot, 2002, 55(3): 270-278.
- [13] WANG H S, SU L Y, JIN X, et al. Isolation of streptonigrin and its novel derivative from *Micromonospora* as inducing agents of p53-dependent cell apoptosis [J]. J Nat Prod, 2002, 65(5): 721-724.
- [14] FUKAMI A, NAKAMURA T, KAWAGUCHI K, et al. A new antimicrobial antibiotic from actinoplanes *Capillaceus* sp. K95-5561T [J]. J Antibiot, 2000, 53(10): 1212-1214.
- [15] ZHANG Q B, AARON J P, MITHRA T R, et al. An

中国现代应用药学 2013 年 12 月第 30 卷第 12 期

isofuranonaphthoquinone produced by an actinoplanes isolate [J]. J Nat Prod, 2009, 72(6): 1213-1215.

- [16] ANTAL N, FIEDLER H P, STACKEBRANDT E, et al. Retymicin, galtamycin B, saquayamycin Z and ribofuranosyllumichrome, novel secondary metabolites from *Micromonospora* sp. Tü 6368 I. Taxonomy, fermentation, isolation and biological activities [J]. J Antibiot, 2005, 58(2): 95-102.
- [17] MALET C L, ROMERO F, ESPLIEGO V F, et al. IB-00208, a new cytotoxic polycyclic xanthone produced by a marine derived Actinomadura. I. Isolation of the strain, taxonomy and biological activites [J]. J Antibiot, 2003, 56(3): 219-225.
- [18] KUNIMOTO S, LU J, ESUMI H, et al. Kigamicins, novel antitumor antibiotics. I. Taxonomy, isolation, physicochemical properties and biological activities [J]. J Antibiot, 2003, 56(12): 1004-1011.
- [19] BANSKOTA A H, MCALPINE J B, SORENSEN D, et al. Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class [J]. J Antibiot, 2006, 59(9): 533-542.
- [20] PHILIP G W, RATNAKAR N A, TAMARA K, et al. Saliniketals A and B, bicyclic polyketides from the marine actinomycete *Salinispora arenicola* [J]. J Nat Prod, 70(1): 83-88.
- [21] PHILIP G W, ERIC D M, RATNAKAR N A, et al. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete *Salinispora arenicola* [J]. J Org Chem, 72(14): 5025-5034.
- [22] CHARAN R D, SCHLINGMANN G, JANSO J, et al. Diazepinomicin, a new antimicrobial alkaloid from a marine *Micromonospora* sp. [J]. J Nat Prod, 2004, 67(8): 1431-1433.
- [23] IVANOVA V, KOLAROVA M, ALEKSIEVA K, et al. Microbiaeratin, a New natural indole alkaloid from a *Microbispora aerata* strain, isolated from Livingston Island, Antarctica [J]. Prep Biochem Biotechnol, 37(2): 161-168.
- [24] KAZUNORI O, TAKASHI T, KAZUKO M, et al. Studies on a new aminoglycoside antibiotic, dactimicin II. Isolation, structure and chemical degradation [J]. J Antibiot, 1981, 34(9): 1090-1100.
- [25] MATSUHASHI Y, YOSHIDA T, HARA T, et al. *In vitro* and *in vivo* antibacterial activities of dactimicin, a novel pseudodisaccharide aminoglycoside, compared with those of other aminoglycoside antibiotics [J]. Antimicrob Agents Chemother, 1985, 27(4): 589-594.
- [26] OH D C, PHILIP G W, CHRISTOPHER A K, et al. Cyanosporasides A and B, chloro- and cyano-cyclopenta[a]indene glycosides from the marine actinomycete "Salinispora pacifica" [J]. Org Lett, 2006, 8(6): 1021-1024.
- [27] MURAKAMI R, FUJITA Y, KIZUKA M, et al. A-102395, a new inhibitor of bacterial translocase I, produced by Amycolatopsis sp. SANK 60206 [J]. J Antibiot, 2007, 60(11): 690-695.
- [28] CHU M, MIERZWA R, JENKINS J, et al. Isolation and characterization of novel oligosaccharides related to Ziracin [J]. J Nat Prod, 2002, 65(11): 1588-1593.
- [29] LI W, LEET J E, AX H A, et al. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. I. Taxonomy, fermentation and biological activities [J]. J Antibiot, 2003, 56(3): 226-231.
- [30] VÉRTESY L, EHLERS E, KOGLER H, et al. Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from *Actinoplanes friuliensis* sp. nov. II. Isolation and structural characterization [J]. J Antibiot, 2000, 53(8): 816-827.
- [31] ISMAELA C, EMILIANA C, EDOARDO S, et al. Antibiotics

Chin JMAP, 2013 December, Vol.30 No.12 . 1383 •

GE23077, novel inhibitors of bacterial RNA polymerase I. taxonomy, isolation and characterization [J]. J Antibiot, 57(3): 210-217.

- [32] LI Z Q, WANG L N, HU X X, et al. Purification and characterization of anti multi-drug-resistant bacterial constituents from fermentation broth of *Actinoplanes* sp. PDF-1 [J]. Chin J Antibiotic(中国抗生素杂志), 2012, 37(5): 366-371.
- [33] YEO W H, YUN B S, KIM Y S, et al. GTRI-BB, a new cytotoxic isochromanquinone produced by *Micromonospora* sp. SA-246 [J]. J Antibiot, 2002, 55(5): 511-515.
- [34] SEOK W Y, IN Y P, BO H S, et al. A new compound from *Micromonospora* sp. SA246, 9-hydroxycrisamicin-A, activates hepatitis B virus replication [J]. Biochem Biophys Res Commun, 319(3): 859-865.
- [35] YANG S W, CHAN T M, TERRACCIANO J, et al. Structure elucidation of a new diketopiperazine Sch 725418 from *Micromonospora* sp. [J]. J Antibiot, 2004, 57(5): 345-347.
- [36] MASKEY R P, LI F C, QIN S, et al. Chandrananimycins A-C: production of novel anticancer antibiotics from a marine *Actinomadura* sp. isolate M048 by variation of medium composition and growth conditions [J]. J Antibiot, 2003, 56(7): 622-629.
- [37] WIJITTRA A, SOMBOON T, SURATTANA A, et al. Identification and antimicrobial activities of actinomycetes from soils in Samed Island, and geldanamycin from strain PC4-3 [J]. Thai J Pharm Sci, 2006(30): 49-56.
- [38] HUANG H Q, WU X P, YI S, et al. Rifamycin S and its geometric isomer produced by a newlyfound actinomycete, *Micromonospora rifamycinica* [J]. Antonie Van Leeuwenhoek, 2009, 95: 143-148.
- [39] MASATO S, MASAAKI O, KEIICHIRO M, et al. Terpenoids

produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from *Verrucosispora gifhornensis* YM28-088 [J]. J Antibiot, 2010, 63(5): 245-250.

- [40] FELING R H, BUCHANAN G O, MINCER T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora [J]. Angew Chem Int Ed Engl, 2003, 42(3): 355-357.
- [41] HOSHINO Y, MUKAI A, YAZAWA K, et al. Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of *Nocardia transvalensis* I. Taxonomy, fermentation, isolation and biological activities [J]. J Antibiot, 2004, 57(12): 797-802.
- [42] MUKAI A, FUKAI T, MATSUMOTO Y, et al. Transvalencin Z, a new antimicrobial compound with salicylic acid residue from *Nocardia transvalensis* IFM 10065 [J]. J Antibiot, 2006, 59(6): 366-369.
- [43] NEMOTO A, HOSHINO Y, YAZAWA K, et al. Asterobactin, a new siderophore group antibiotic from *Nocardia asteroids* [J]. J Antibiot, 2002, 55(6): 593-597.
- [44] HARADA K, TOMITA K, FUJII K, et al. Isolation and structural characterization of siderophores, madurastatins, produced by a pathogenic *Actinomadura madurae* [J]. J Antibiot, 2004, 57(2): 125-135.
- [45] LIU Z H, JIANG C L. Modern Biology and Bitechnology on Actinomycetes(放线菌现代生物学与生物技术) [M]. Beijing: Science Press, 2004: 24.
- [46] TAKAHASHI Y, OMURA S. Isolation of new actinomycete strain for the screening of new bioactive compounds [J]. J Gen Appl Microbiol, 2003, 49(3): 141-154.

收稿日期: 2013-01-13

《中国新药杂志》征订启事

《中国新药杂志》创刊于 1992 年,由国家食品药品监督管理局主管的药学类学术期刊,是我国药学核心期刊,主编为全国人大常委会副委员长桑国卫院士,编委会成员包括我国医药界 17 名院士在内的近 150 名药 学和医学领军专家。

杂志辟有世界新药之窗、新药述评、新药研发论坛、新药申报与审评技术、重大新药创制专项巡礼、综述、临床研究、实验研究、药师与临床、不良反应等栏目。本刊及时跟踪世界新药研发前沿,报道我国新药注册信息和审评技术要求,刊登新药临床前和临床研究成果,介绍世界上市新药,为我国新药创制和合理应用提供最新信息和指导。

《中国新药杂志》为中国科技核心期刊、全国中文核心期刊、中国科技论文统计源期刊、中国期刊方阵 "双效"期刊、中国精品科技期刊。被美国《化学文摘》(CA)、荷兰《医学文摘》(EMBASE/EM)、《国际药 学文摘》(IPA)、 荷兰 SCOPUS 数据库收录、加入中国学术期刊光盘版,进入北大中文科技期刊目录。

订阅信息

《中国新药杂志》为半月刊,每月15日和30日出版,国内、外公开发行。 联系人:王静芳 电话:010-82282326 传真:010-82282289 地址:北京市海淀区大钟寺东路太阳园11-2603 邮编:100098 邮箱:wangjf@newdrug.cn 官方网站:http://www.newdrug.cn