滴丸的制备有较大的影响, 滴丸中药物与基质比 愈大, 滴丸收集时愈软, 易聚集, 同时也会使圆 整度降低,而丸重差异和溶散时限则会增大。 吐 温-80 能增加药物的溶解性和溶出速度,其量过 高,使药液黏稠度增大,易产生拖尾,不易滴制。 实验过程还显示,当溶散时限愈小时,圆整度愈 大, 丸重差异可能升高也可能降低; 当丸重差异 愈大时,圆整度降低,而溶散时限可能增大也可 能降低。由此可以得出,根据每个指标优选的条 件可能是相互矛盾的,对某一效应有利的条件可 能对其他效应不利,各效应必须达成妥协,使所 有指标综合为一个值^[3],因此本实验引进了总评归 一值。同时选取最佳成型工艺过程中并非归一值 越高越好,其前提条件是所选的最佳工艺的总评 归一值在等高线重叠区域。通过总评归一值的优 化与预测,可以得到综合效应较佳的制备工艺, 验证实验制备的6批滴丸均符合中国药典2010版 (一部)附录 IK 滴丸剂项下规定。

REFERENCES

[1] LIN L Q, LIN X H, HUAN G L Y, et al. Anti-tumor activity of extracts of *Bidens bipinnata* L. *in vitro* [J]. J Fujian Med

Univ(福建医科大学学报), 2010, 44(2): 83-85.

- [2] WAN Z X, WU J G, CAI Q Y, et al. Inhibition of proliferation and induction of apoptosis in human colon cancer cell lines RKO by *Bidens pilosa* var radiata Schult Bip of Fujian province [J]. Acta Univ Tradit Med Sin Pharm Fujian(福建中 医药大学学报), 2011, 21(1): 40-42.
- [3] WU W, CUI G H, L U B. Optimization of multiple evarlables: application of central composite design and overall desirability [J]. Chin Pharm J(中国药学杂志), 2000, 35(8): 530-533.
- [4] TENG K, RUAN H S, WU Z J, et al. Optimal extraction of total flavone from Tengligen by central composite design and response surface methodology [J]. Chin J Mod Appl Pharm(中 国现代应用药学), 2012, 29(7): 610-614.
- [5] CAO J, WANG F G, LIU K, et al. Study on the extraction of dictamni cortex with ultrasonic wave technology optimized by central composite design and response surface method [J]. Chin J Mod Appl Pharm(中国现代应用药学), 2012, 29(10): 895-899.
- [6] XIA Q, YAO ZH Q, GAO Y J. Study on selecting of the best extraction technique of totol flavonoids in *Bidens bipinnata* L. by orthogonal test [J]. Chin Hosp Pharm J(中国医院药学杂 志), 2007, 27(6): 755-757.
- [7] CHEN W, XIA H, WU W. Optimized preparation of silymarin dropping pill by a central composite design-response surface method [J]. Chin Tradit Herb Drugs(中草药), 2005, 36(5): 679-683.
- [8] GUI S Y, ZHOU Y Q. Study on moulding technics of Huangyangning dropping pills [J]. Chin Hosp Pharm J(中国医院药学杂志), 2005, 25(12): 1120-1121.

收稿日期: 2013-01-19

HPLC-超滤离心法测定连翘酯苷复方脂质体包封率

祝文琪,徐卫康,侯晓林,陆彦,吴国娟*(北京农学院动物科学技术学院,北京 102206)

摘要:目的 建立一种快速、准确测定连翘酯苷复方脂质体包封率的方法。方法 采用逆向蒸发法制备连翘酯苷复方脂 质体,建立检测连翘酯苷复方含量的高效液相色谱条件,用超滤离心法处理复方脂质体,测定连翘酯苷复方脂质体的包 封率。结果 用连翘酯苷和绿原酸对照品建立标准曲线,在 0.781 25~50 µg·mL⁻¹内线性关系良好,采用超滤离心法处理 样品后连续 3 次测定包封率,平均包封率为 92.38%和 44.72%,其 RSD 分别为 2.76%和 2.35%。结论 HPLC-超滤离心法 可准确、方便的测定连翘酯苷复方脂质体的包封率。

关键词:超滤离心法;高效液相色谱法;连翘酯苷;脂质体;包封率

中图分类号: R917.101 文献标志码: B 文章编号: 1007-7693(2013)09-1001-04

Determination of Entrapment Efficiency of Forsythiaside Compound Liposome by HPLC-Ulrafiltration

ZHU Wenqi, XU Weikang, HOU Xiaolin, LU Yan, WU Guojuan^{*} (Department of Animal Science and Technology Beijing University of Agriculture, Beijing 102206, China)

基金项目: 国家自然科学基金项目(31172362); 北京市自然科学基金项目(5102014)

作者简介:祝文琪,女,硕士 Tel: (010)80797300 E-mail: zhuwenqi45@126.com ^{*}通信作者:吴国娟,女,博士,教授 Tel: (010)80796702 E-mail:wgj9288@sina.com

ABSTRACT: OBJECTIVE To establish a method for determining entrapment efficiency of forsythiaside compound liposome. **METHODS** The liposome were prepared by reverse evaporation method, and treated with ultrafiltration. HPLC was used to detect the content of drug in the forsythiaside compound liposome. **RESULTS** The standard curve for forsythiaside and chlorogenic acid was linear in the concentration range of 0.78 125–50 μ g·mL⁻¹. The mean value entrapment efficiency of forsythiaside and chlorgenic acid in the three samples were 92.38% and 44.72% with RSD of 2.76% and 2.35%. **CONCLUSION** The entrapment efficiency of forsythiaside compound liposome can be determinated simply and quickly by the HPLC-ultrafiltration.

KEY WORDS: ultrafiltration; HPLC; forsythiaside; lipsome; entrapment efficiency

由于本实验室进行的中药抗某种病毒研究所 选择的是连翘酯苷和绿原酸,并且经研究表明, 将 2 种成分联合应用具有一定的抗病毒效果,故 将二者混合成为连翘酯苷复方,并进行脂质体制 备方法的研究,所以与市售连翘酯苷复方不同, 本实验用连翘酯苷复方是由连翘酯苷和绿原酸 2 种中药有效成分组成。

据研究表明,连翘酯苷和绿原酸都具有抗炎、 杀菌、抗病毒作用^[1-2],将其包裹在脂质体中,可 在动物体内起到缓释作用。脂质体是磷脂分散在 水中形成的一个类球形的、包封一部分水相的封 闭囊泡,可提高药物包封率^[3-4]。脂质体包封药物 作为缓释制剂是从 1934 年开始^[5],目前国内外载 药脂质体技术已经趋于成熟,并有很多已经应用 于临床治疗的药物上市。

测定脂质体包封率的方法有凝胶柱层析法、 鱼精蛋白聚集法^[6]、微柱离心法^[7]、透析与反透析 法、超滤离心法等,可根据实际条件和药物的性 质等选择合适的方法进行测定。本实验在庄英华 等^[8]所建立的一种测定连翘酯苷脂质体包封率的 方法基础上,将高效液相色谱分析技术与超滤离 心法相结合,旨在建立一种快速、便捷的测定包 封率方法,此法适用于连翘酯苷等水溶性药物^[9], 且超滤离心管容量可调整。

1 仪器、材料与试剂

LR4001 旋转蒸发仪(德国 Heidolph Instruments 公司); Agilent1200 高效液相色谱仪(四元泵、在线 脱气机、自动进样器、二极管阵列检测器,美国 Agilent 公司); Allegra 64R 超速冷冻离心机 (Beckman 公司); SHZ-III 型真空泵(上海亚荣生化 仪器厂)。

超滤离心管(Milipore 公司,截留分子量为 10 K); 聚碳酸酯膜滤器(0.22 μm,美国 PALL); 连翘酯苷(大连医海生物科技有限公司,批号: MVST-12100301,纯度≥98%); 绿原酸(中国兽药 监察所,批号: Z0260611,纯度: 100%); 蛋黄卵 磷脂(上海艾维特医药科技有限公司,纯度≥ 98%); 胆固醇(国药集团化学试剂有限公司); 维生 素 E(Sigma 公司); 色谱纯乙腈和甲醇(Fisher Scientfic); 色谱纯磷酸(MREDA Technology Inc); 分析纯乙醇(北京化工厂)。

2 方法与结果

2.1 连翘酯苷复方脂质体的制备

采用逆向蒸发法制备脂质体。精密称取适量 磷脂、胆固醇和维生素 E 溶于 3 mL 乙醚中,将含 有待包封连翘酯苷和绿原酸的水相和乙醚混合超 声 5 min 后倒入梨形瓶中,减压蒸发,90 r·min⁻¹, 除去乙醚,约 50 min。随着有机溶剂的蒸发,混 合物从一种高黏度的凝胶状态变为水混悬液时, 加入适量 PBS(pH=6.5)水化,进一步减压蒸发除去 痕量有机溶剂,制得连翘酯苷复方脂质体。

2.2 药物含量测定

2.2.1 色谱条件 色谱柱: Agilent ZOR BAX SB-C₁₈(4.6 mm×250 mm, 5 µm), 流动相: 0.2% 磷酸水溶液(A)-甲醇(B)-乙腈(C), 梯度洗脱(流动相 B 12%, 流动相 C: 0~3 min 15%; 3~6 min 15%~20%, 60 min 后 20%), 流速: 1.0 min·mL⁻¹, 检测波长: 325 nm, 参考波长: 280 nm, 进样量: 5 µL, 柱温: 30 ℃。此条件, 可将连翘酯苷和绿 原酸有效分离, 出峰时间分别为 3.53 min 和 7.12 min, 色谱峰对称因子在 0.95~1.05 之间, 色谱峰见 图 1。

2.2.2 色谱条件特异性 分别取连翘酯苷溶液、 绿原酸溶液配成连翘酯苷和绿原酸混合溶液,经 用 0.22 mm 滤器过滤后按 "2.2.1"色谱条件进样; 取连翘酯苷复方脂质体,用甲醇破乳后,按上述 方法进样。结果见图 1,表明此方法可有效将 2 种 有效成分分离,且脂质体中磷脂等成分对色谱分 析无干扰。

2.2.3 标准曲线绘制 精密取连翘酯苷和绿原酸 对照品各 4 mg, 溶于 10 mL 甲醇中,稀释配制成 药品浓度为 50, 25, 12.5, 6.25, 3.125, 1.562 5,

图1 高效液相色谱图

A-连翘酯苷; B-绿原酸; C-连翘酯苷复方; D-连翘酯苷复方脂质体 Fig 1 HPLC chromatograms

A-forsythiaside; B-chlorgenic acid; C-forsythiaside compound; D-forsythiaside compound lipsome

0.781 25 μg·mL⁻¹的标准溶液。用 0.22 μm 滤器过 滤后按 "2.2.1"色谱条件进样,每个浓度重复进 样 5 次,分别以峰面积(*A*)和样品浓度(*C*)为横纵坐 标建立校正曲线,即连翘酯苷和绿原酸的标准曲 线,得到二者线性回归方程分别为 *A*₁=3.553*C*+ 0.981, *r*=0.999 9; *A*₂=9.787*C*+2.432, *r*=0.999 9, 表 明在 0.781 25–50 μg·mL⁻¹ 内线性关系良好。

2.3 方法学考察

2.3.1 精密度实验 取高、中、低 3 个浓度的标 准药物混合液,经 0.22 μm 滤器过滤后按"2.2.1" 色谱条件进样,分别在 1 d 内测定 5 次,连续测定 5 d,计算日内精密度和日间精密度。结果绿原酸 溶液高、中、低 3 个浓度的日内精密度分别为 0.55%,0.53%,0.32%,日间精密度分别为 1.55%, 1.64%,1.38%;连翘酯苷溶液高、中、低 3 个浓 度的日内精密度分别为 0.51%,0.38%,0.57%, 日间精密度分别为 2.51%,1.05%,1.28%,表明 该方法精密度良好。

2.3.2 方法回收率测定 取高、中、低 3 个浓度的对照品药物混合溶液 0.1 mL,各加空白脂质体 0.1 mL,乙醇溶解定容,用 0.22 μm 滤器过滤后按 "2.2.1"色谱条件进样,计算回收率,结果见表 1。
2.3.3 游离药物回收率测定 各取 3 种不同浓度的对照品药物混合物溶液 200 μL 加入超滤离心管中,15 000 r·min⁻¹离心 30 min 后收集滤液。将超滤前后的溶液稀释至一定浓度,用 0.22 μm 滤器过

滤后按"2.2.1"色谱条件进样,计算游离药物回 收率,结果见表 2。

表1 空白脂质体加样回收率(n=3)

Tab 1The recoveries of forsythoside and chlorogenic acidwith the addition of blank liposome

浓度/µg·mL ⁻¹ -	测定浓度/µg·mL ⁻¹		回收率/%	
	连翘酯苷	绿原酸	连翘酯苷	绿原酸
5	4.685	4.385	93.70	87.70
10	9.562	9.195	95.62	91.95
20	18.673	19.615	93.37	98.08

表2 游离药物超滤回收率(n=3)

Tab 2 The recovery of free forsythoside and chlorogenic acid after ultrafiltration (n=3)

超滤前浓度/µg·mL ⁻¹		超滤后浓度/µg·mL ⁻¹		回收率/%	
连翘酯苷	绿原酸	连翘酯苷	绿原酸	连翘酯苷	绿原酸
7.167	9.431	7.023	9.418	97.99	99.86
17.681	19.375	17.108	19.319	96.75	99.71
31.747	32.772	31.050	32.758	97.80	99.96

2.3.4 超滤加样回收率测定 各取 3 种不同浓度 的标准药物混合物溶液适量,加入 0.1 mL 空白脂 质体混匀,加入到超滤离心管中,离心超滤后收 集滤液,分别将超滤前后溶液稀释至一定浓度, 用 0.22 μm 滤器过滤后按 "2.2.1"色谱条件进样, 计算回收率,结果见表 3。

表3 超滤加样回收率(n=3)

Tab 3 The recovery of forsythoside and chlorogenic acidwith the addition of blank liposome after ultrafiltration (n=3)

超滤前浓度/µg·mL ⁻¹		超滤后浓度/µg·mL ⁻¹		回收率/%	
连翘酯苷	绿原酸	连翘酯苷	绿原酸	连翘酯苷	绿原酸
4.685	3.293	4.353	2.884	92.91	87.58
27.103	17.587	26.253	17.076	96.86	97.09
45.142	32.553	44.966	32.528	99.61	99.92

2.4 脂质体包封率的测定

按"2.1"方法制备脂质体,连续测定包封率 3次。取制备好的脂质体 0.2 mL,加入超滤离心管 中,15 000 r·min⁻¹离心 30 min,后收集滤液。将 滤液和未经超滤的脂质体用乙醇破坏稀释至同样 倍数,用 0.22 μm 滤器过滤后按"2.2.1"色谱条件 进样,得出药物浓度。滤液中药物浓度为 C_{free}, 未经超滤脂质体中药物浓度为 C_{total},根据药物的 包封率公式 En%=(C_{total}-C_{free})/C_{total}×100%,计算 药物包封率 En(%),结果见表 4。

表4 连翘酯苷复方脂质体包封率测定结果(n=3)

Tab 4 The entrapment efficiency of forsythoside compound liposome (n=3)

批次	包封率/%		RSD/%	
JULIX	连翘酯苷	绿原酸	连翘酯苷	绿原酸
1	95.13	44.01		
2	91.90	44.23	2.76	2.35
3	90.10	45.93		
包封率平均值	92.38	44.72		

3 讨论

脂质体的功能有很多,载药脂质体被研究者 广泛研究,作为载药脂质体,包封率是影响其功 能发挥的主要因素之一。测定包封率的方法有很 多种,比较起来此种方法更加便捷,且也可达到 实验要求的准确程度。从计算方法的角度,也可 通过计算包封体积和质量来求得包封率,但是二 者没有此种计算方法直观。此种方法也有可能存 在一定的难度,即液相色谱检测条件的建立是一 个小难点,但如果能够成功建立色谱条件,后期 的包封率测定会很容易。

本实验所建立的测定方法,较许伯慧等^[10]建立 的齐墩果酸脂质体包封率测定法操作更为快捷,许 伯慧建立的方法至少需要耗时 24 h,本实验所用方 法最快 2 h 即可完成测定;由于鱼精蛋白价格较昂 贵,所以该方法,较鱼精蛋白凝聚法相比成本较低。

众多脂质体包封率的测定方法各有特点,研 究人员应该综合自身实验室条件以及所研究物质 的性质等因素,选择合适的测定方法。 此外,如果测定方法建立的准确,但所测定 包封率偏低,可能与脂质体的制备方法有关系, 与所建立的 HPLC-超滤离心方法无关。

REFERENCES

- [1] HUK J, XUK J,WANG Y H, et al. The study on the effective of Forsythoside a inhibit the virus *in vitro* [J]. Chin J Tradit Med Sci Technol(中国中医药科技), 2001, 8(2): 89.
- [2] WANG H J, WU G J, SUN J, et al. The study on the pharmacodynamics of chlorogenic acid [J]. Chin J Vet Med(中 兽医学杂志), 2005(5): 7-11.
- [3] Zhuo J J, FENG S H, LI K Y. Preparation and quality evaluation of artemisinin liposomes [J]. Chin J Mod Appl Pharm(中国现代应用药学), 2011, 28(3): 251-256.
- [4] REN J, FANGZ J, YIN X X, et al. Quality evaluation of quercrtin proliposomes [J]. Chin J Mod Appl Pharm(中国现代 应用药学), 2013, 30(1): 39-42.
- [5] DENG Y J. Lipsome Technology(脂质体技术) [M]. Beijing: People's Medical Publishing House, 2007.
- [6] FRY D W, WHITE J C, GOLDMAN I D. Rapid separation of low molecular weight solutes from lipsome without dilution [J]. Anal Biochem, 1978, 90(2): 809-15.
- [7] ROSIER R N, GUNTER T E, TUCKER D A, et al. A rapid method for separeting small vesicles from suspersion [J]. Anal Biochem, 1979, 96(2): 384-390.
- [8] ZHANG Y H, HAN W, WU G J, et al. Determination of entrapment efficiency of forsythoside liposome by ultrafiltration [J]. Chin J New Drugs(中国新药杂志), 2012, 21(18): 100-103.
- [9] VEMURI S, RHODES C T. Preparation and characterization of lipsomes as therapeutic delivery systems: a review [J]. Pharmaceutics Acta Helvetiae, 1995, 70(2): 95-111.
- [10] XU B H, LI X X, MENG L, et al. Determination of entrapment efficiency of oleanolic acid liposomes [J]. Chin J Exp Trad Med Form(中国实验方剂学杂志), 2012, 18(23): 86-90.

收稿日期: 2012-11-13

丁酸氯维地平的细菌内毒素检查法

许雷鸣¹, 武谷¹, 堵伟锋¹, 顾倩^{2*}(1.安徽省食品药品检验所, 合肥 230051; 2.皖南医学院, 安徽 芜湖 241000)

摘要:目的 建立丁酸氯维地平的细菌内毒素检查方法。方法 以60%乙醇溶液溶解丁酸氯维地平,再用细菌内毒素检查用水稀释后按中国药典2010年版二部附录细菌内毒素检查法,采用2个不同厂家的鲎试剂进行干扰试验。结果 根据临床实际应用情况,确定丁酸氯维地平的内毒素限值L=4.7 EU·mg⁻¹;在本实验条件下,丁酸氯维地平的最大不干扰浓度为0.0133 mg·mL⁻¹,可用灵敏度0.06 EU·mL⁻¹及以上的鲎试剂检测丁酸氯维地平中的细菌内毒素。结论 本试验建立的 细菌内毒素检查方法可用于丁酸氯维地平的细菌内毒素检查,控制其产品质量。

关键词:丁酸氯维地平;细菌内毒素;干扰试验

中图分类号: R927.33 文献标志码: B 文章编号: 1007-7693(2013)09-1004-05

基金项目: 安徽省食品药品监管系统科研项目(0004)

 作者简介: 许雷鸣, 男, 博士, 主管药师
 Tel: (0551)63368779
 E-mail: xuleiming1980@yahoo.com.cn
 *通信作者: 顾倩, 女, 硕士,

 讲师
 Tel: (0553)3932474
 E-mail: guqian9780@sina.com