苗药水冬瓜叶化学成分的 HPLC-HESI-HRMS 分析

韩忠耀¹, 胡恩明², 张林甦¹, 曹芳¹, 陈建字^{3*}, 周福军^{4*}, 宋伟¹(1.黔南民族医学高等专科学校, 贵州都勾 558000; 2.贵州省中国科学院天然产物化学重点实验室, 贵阳 550014; 3.南开大学农药国家工程研究中心, 天津 300071; 4.天津药物研究院, 天津 300301)

摘要:目的 采用 HPLC-HESI-HRMS 技术对苗药水冬瓜叶中的化学成分进行定性分析。方法 采用 Thermo Fisher Hypersil GOLD aQ C₁₈色谱柱(100 mm×2.1 mm, 1.9 µm),以0.1%甲酸水溶液-乙腈(0.1%甲酸)为流动相梯度洗脱;质谱使 用 HESI 离子源,正离子和负离子模式下采集数据。同时采用 HPLC 比较 7-羟基香豆素、断氧化马钱苷、金丝桃苷、异 槲皮苷对照品与样品中化合物 17,20,24,25 保留时间(*t*_R)差异性,比较薄层色谱荧光特征与比移值(*Rf*值),并参考文 献中有关 7-羟基香豆素、断氧化马钱苷、金丝桃苷、异槲皮苷质谱裂解碎片特征综合进行验证。结果 通过高分辨质谱 正、负离子质谱信息、数据库及相关文献数据对照,共推测出苗药水冬瓜叶中 38 个化合物,包括 3 个氨基酸类化合物, 5 个生物碱类化合物,10 个有机酸类化合物,3 个苯丙素类化合物,3 个芳香含氧衍生物类化合物,3 个萜类化合物,6 个黄酮类化合物,1 个酰胺类化合物,4 个其他类化合物。验证结果表明,7-羟基香豆素、断氧化马钱苷、金丝桃苷、异 槲皮苷对照品分别与化合物 17,20,24,25 的 *t*_R 相比差异均<0.1 min;在药材样品溶液、7-羟基香豆素、断氧化马钱苷、 金丝桃苷、异槲皮苷对照品色谱相应的位置上分别显相同颜色的蓝色荧光斑点,*Rf*值一致;文献表明化合物 17,20,24, 25 分别与 7-羟基香豆素、断氧化马钱苷、金丝桃苷、异槲皮苷具有相似的质谱裂解碎片特征。结论 初步鉴定出化合物 17,20,24,25 分别为 7-羟基香豆素、断氧化马钱苷、金丝桃苷、异槲皮苷。HPLC-HESI-HRMS 对苗药水冬瓜叶中化 学成分的初步推测具有一定的科学性,为阐明苗药水冬瓜叶药材的药效物质基础提供依据。

关键词:水冬瓜叶;化学成分;HPLC-HESI-HRMS;高分辨质谱

中图分类号: R917.101 文献标志码: B 文章编号: 1007-7693(2022)13-1721-10

DOI: 10.13748/j.cnki.issn1007-7693.2022.13.010

引用本文:韩忠耀,胡恩明,张林甦,等. 苗药水冬瓜叶化学成分的 HPLC-HESI-HRMS 分析[J]. 中国现代应用药学,2022, 39(13): 1721-1730.

Analysis on Chemical Components for the Leaves of the Miao Medicine *Toricellia Angulata* Oliv. Var. *Intermedia*(Harms) Hu by HPLC-HESI-HRMS

HAN Zhongyao¹, HU Enming², ZHANG Linsu¹, CAO Fang¹, CHEN Jianyu^{3*}, ZHOU Fujun^{4*}, SONG Wei¹ (1.Qiannan Medical College for Nationalities, Duyun 558000, China; 2.Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; 3.Pesticide National Engineering Research Center, Nankai University, Tianjin 300071, China; 4.Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China)

ABSTRACT: OBJECTIVE To qualitatively analyze the chemical components in the leaves of the Miao Medicine *Toricellia Angulata* Oliv. var. *intermedia*(Harms) Hu by HPLC-HESI-HRMS. **METHODS** Thermo Fisher Hypersil GOLD aQ $C_{18}(100 \text{ mm} \times 2.1 \text{ mm}, 1.9 \mu\text{m})$ column was adopted, with 0.1% formic acid water solution-methyl cyanide(0.1% formic) as the mobile phase for gradient elution; HESI ion source was used for mass spectra, the date were collected in positive and negative mode. At the same time, the difference of retention time(t_R) between 7-hydroxycoumarin, secoxyloganin, hyperin and isoquercitrin with compounds **17**, **20**, **24** and **25** were verified by HPLC. Compared the fluorescence characteristics of TLC with *Rf* values. And the characteristics of mass spectrometric fragmentation fragments of 7-hydroxycoumarin, secoxyloganin, hyperin and isoquercitrin were comprehensively verified in references. **RESULTS** Thirty-eight chemical components in the leaves of the Miao Medicine *Toricellia Angulata* Oliv. var. *intermedia*(Harms) Hu were inferred by analyzing positive and negative ion spectra information of high resolution mass spectrometer with date from data base and relevant literature, including 3 amino acids, 5 alkaloids, 10 organic acids, 3 phenylpropanoids, 3 aromatic oxygen-containing derivatives, 3 terpenes, 6 flavonoids, 1 amide and 4 other compounds. The results showed that the difference of t_R of 7-hydroxycoumarin, secoxyloganin, hyperin and isoquercitrin were <0.1 min compared with compounds **17**, **20**, **24** and **25**, respectively. The same blue fluorescence spots were shown on the corresponding chromatographic positions of the medicinal sample solution, 7-hydroxycoumarin, secoxyloganin, hyperoside and isoquercitrin reference substances, and the *Rf* values were consistent. And the literature showed that compounds

基金项目:贵州省自然科学技术基金项目(黔科合基础[2020]1Y390 号);黔南民族医学高等专科学校科研基金项目(qnyz202023, qnyz202034) 作者简介:韩忠耀,男,硕士,副教授 E-mail: 317230913@qq.com *通信作者:陈建宇,男,高级实验师 E-mail: jerrynk@nankai.edu.cn 周福军,女,硕士,研究员,硕导 E-mail: zhoufj@tjipr.com

17, 20, 24 and 25 had similar characteristics of MS fragmentation to 7-hydroxycoumarin, secoxyloganin loganin, hyperoside and isoquercitrin, respectively. **CONCLUSION** Compounds 17, 20, 24 and 25 were identified as 7-hydroxycoumarin, secoxyloganin, hyperin and isoquercitrin. It indicates that HPLC-HESI-HRMS has a scientific basis for the preliminary estimation of the chemical composition of the leaves of *Toricellia Angulata* Oliv. var. *intermedia*(Harms) Hu. It will provide basis for therapeutic material basis of the leaves of the Miao Medicine *Toricellia Angulata* Oliv. var. *intermedia* (Harms) Hu. **KEYWORDS:** the leaves of *Toricellia Angulata* Oliv.var.*intermedia* (Harms) Hu; chemical components; HPLC-HESI-HRMS; HRMS

水冬瓜根皮来源于山茱萸科植物有齿鞘柄木 Toricellia Angulata Oliv. var. intermedia (Harms) Hu 的干燥根皮[1],水冬瓜叶为该植物的干燥叶,别名 大接骨丹叶。水冬瓜根皮主要含有β-谷甾醇[2-3]、 7-羟基-3-乙基苯酚^[2]、3β-甲氧基-豆甾-7-烯^[2]、 谷甾烷^[2]、(E)-对甲基苯丙烯醛^[2-3]、豆甾-7-烯-3-醇^[2]、邻,对-二甲氧基苯甲酸^[2-3]、β-胡萝卜苷^[2-4]、 熊果酸^[2]、正十八烷酸^[2]、二十二烷酸^[2]、7-羟基 -6-甲氧基香豆素^[3]、硬脂酸^[3-4]、软脂酸^[2-4]、 syringoylglycerol^[3], 2H-1-benzopyran-2-one^[3], 3,5-甲氧基苯甲醛^[3]、9H-pyrano[2,3-f]-1,4-benzodioxin-9-one^[3]、7-羰基-β-胡萝卜苷^[3]、10-griselinosidic acid^[3,5]、丁香树脂酚^[4]、豆甾醇^[4]、3,4,5,7-四羟基-苯乙酸^[4]、豆甾-5,11-二烯-3β-醇^[4]、22,23-二氢豆 甾醇^[4]、26,27-dinor-4,4-dimethyl-cholesta-8,14dien-3-ol^[4]、4-羟基-3,5-二甲氧基苯甲醛^[4]、 griselinoside^[5]、紫丁香苷^[5]、coniferin^[5]、quercetin-3-O-glucoside^[5], astragalin^[5], phytol^[5].

与经典的系统溶剂化学分离法相比,液质联 用技术^[6-7],尤其是高分辨质谱(high resolution mass spectrum, HRMS)技术,在鉴定植物药化学 成分中具有快速、科学、可靠、绿色等优点,通 常被应用于植物药、天然药物、中药及民族药中 未知化学成分的鉴定。当前,针对民族药 Toricellia Angulata Oliv.var.intermedia (Harms) Hu 系列研 究,主要集中在根皮部位的化学成分^[2-5]、质量控 制^[8-10]等,尚未针对水冬瓜叶药材化学成分相关研 究,因此,本试验拟以水冬瓜叶药材为研究样本, 采用 HPLC-HESI-HRMS 技术,对水冬瓜叶药材甲 醇提取物中的主要化学成分进行初步推测分析, 为阐明贵州特色民族药水冬瓜叶药材的药效物质 基础提供参考。

1 仪器与试药

1.1 仪器

Q Exactive Focus 高分辨 Orbitrap 质谱仪、 Dionex Ultimate 3000 RSLC 液相仪均来自 Thermo Fisher Scientific; 分析软件: Compound Discoverer 3.0; BT25S 电子天平(十万分之一, 德国 Sartorius 公司); 101-3AB 型烘箱(天津市泰斯特仪器有限 公司)。

1.2 试药

金丝桃苷对照品(批号: CHB180214; 纯度≥ 98%)、异槲皮苷对照品(批号: CHB180628; 纯 度≥98%)、7-羟基香豆素对照品(批号: CHB190103; 纯度≥98%)、断氧化马钱苷对照品 (批号: CHB180214; 纯度≥98%)均购自成都克洛 玛生物科技有限公司; 乙腈(色谱纯,康科德色谱 试剂); 甲酸(分析纯, 莱阳经济技术开发区精细化 工厂); 水为超纯水(自制); 甲醇(分析纯,科密欧 试剂); 其他试剂均为分析纯。

1.3 药材

水冬瓜叶药材自采于贵州省都匀市经济开发区 大坪镇(经度: 107°38′33″N; 纬度: 26°13′46″S; 海拔 675.4 m),药材经黔南民族医学高等专科学校 李燕副教授鉴定为山茱萸科植物有齿鞘柄木 *Toricellia Angulata* Oliv. var. *intermedia* (Harms) Hu的叶。

2 方法

2.1 液相色谱条件

Thermo Fisher Hypersil GOLD aQ C₁₈色谱柱 (100 mm×2.1 mm, 1.9 µm); 流速: 0.3 mL·min⁻¹; 柱温: 40 ℃; 进样量: 5 µL; 梯度洗脱, 流动相 A 为 0.1%甲酸水溶液, B 相为乙腈(0.1%甲酸), 洗脱条件:0~2 min, 95%A; 2~42 min, 95%→5%A; 42~47 min, 5%A; 47~47.1 min, 5%→95%A; 47.1~50 min, 95%A。

2.2 HRMS 质谱条件

采用 HESI; 扫描模式: 正负离子模式同时采 集 Full MS-ddms²; 质量扫描范围 *m/z*: 100~ 1 500 Da; 频谱数据类型: Profile; 数据分辨率: Full MS 70 000; MS/MS 17 500; 自动增益控制数 量: Full MS 1×10⁶, MS/MS 2×10⁵; 最小注入时间: 100 ms(Full MS), 50 ms(MS/MS); 循环计数: 3; MSX 计数: 1; 隔离宽度: 1.5 *m/z*; 阶梯 NCE: 20, 40, 60; 最小 AGC 目标: 8×10³; 强度阈值: 1.6×10⁵;喷雾电压:正离子 3.0 kV;负离子 2.5 kV; 鞘气: 35 psi; 辅助气: 10 psi; 吹扫气: 0; 离子 传输管温度: 320 ℃。

2.3 供试品溶液的制备

取新鲜药材,烘箱 55 ℃下烘干,粉碎后过四 号筛,混匀,备用。称取药材粉末约 0.5g,精密 称定,置 100 mL 圆底烧瓶中,精密加入甲醇 100 mL,回流提取 0.5 h,放冷,过滤于 100 mL 量瓶中,用甲醇补足滤液至刻度,摇匀。滤液用 0.45 µm 微孔滤膜过滤,即得。

3 结果

3.1 LC-MS 成分鉴定

采用 HPLC-HESI-HRMS 对苗药水冬瓜叶药 材中的化学成分进行定性分析,(+)HESI-MS 和 (-)HESI-MS 的质谱总离子图见图 1。

3.2 水冬瓜叶甲醇提取物化学成分分析

通过 HPLC-HESI-HRMS 检测得到苗药水冬 瓜叶中各化学成分的保留时间和 HRMS 信息,并 结合离子总图、Compound Discoverer 3.0 数据库及 相关文献数据对比进行化学成分确认,水冬瓜叶 药材中化学成分鉴定结果见表 1。

3.3 化学成分的质谱解析

3.3.1 氨基酸类化合物 从水冬瓜叶甲醇提取物中共推测出3个氨基酸类化合物,其中化合物1,
2,5分别为L-脯氨酸、D-高脯氨酸、L-亮氨酸,

这 3 个化合物结构相似, 均为氨基酸类化合物。 通常,该类化合物的裂解规律为化合物正离子以 失去 CO2、HCOOH 或 H2O 为特征裂解方式。分 析此类化合物的裂解规律时发现, 化合物 1 在正 离子模式下,其 m/z [M+H]⁺为 116.071 07,在进一 步的质谱裂解过程中,其准分子离子峰丢失一分 子 HCOOH 形成特征碎片离子 m/z 70.066 00 [M-HCOOH+H]+,与文献[11]报道 L-脯氨酸的特征 碎片离子 m/z 70.2 基本一致,符合 L-脯氨酸的裂 解规律;化合物2在正离子模式下,其m/z[M+H]+ 为130.086 50,在进一步的质谱裂解过程中,其准 分子离子峰丢失一分子 HCOOH 形成特征碎片离 子 m/z 84.081 58[M-HCOOH+H]+, 丢失一分子 H₂O 形成特征碎片离子 m/z 112.087 30 [M-H₂O+H]+; 化 合物5在正离子模式下,其m/z [M+H]+为132.1021, 在进一步的质谱裂解过程中,其准分子离子峰丢 失一分子甲酸形成特征碎片离子 m/z 86.097 18 [M-HCOOH+H]⁺, 与文献[10]报道 L-亮氨酸的特 征碎片离子 m/z 86.2 基本一致, 丢失一分子 H₂O 形成特征碎片离子 m/z 113.964 19 [M-H₂O+H]⁺,符 合 L-亮氨酸的裂解规律。

3.3.2 生物碱类化合物 从水冬瓜叶甲醇提取物 中共推测出 5 个生物碱类化合物,其中化合物 3, 4,8,9,10 分别为腺苷、巴豆苷、胆色素原、(*E*)-3-吲哚丙烯酸、5'-S-methyl-5'-thioadenosine,这 5 个化合物结构相似,由于该类化合物通常为成环

图 1 水冬瓜叶中正离子(A)和负离子(B)模式的总离子图 Fig. 1 Total ion current chromatogram in positive(A) and negative(B) ion mode for the leaves of *Toricellia Angulata* Oliv. Var.

intermedia(Harms) Hu

中国现代应用药学 2022 年 7 月第 39 卷第 13 期

表1 水冬瓜叶化学成分分析

Tab. 1	Analysis on chemical of	ompositions in the	leaves of Toricellia Angulata	Oliv. var. intermedia (Harms) Hu
--------	-------------------------	--------------------	-------------------------------	----------------------------------

ىدر		正离子模式		负离子模式						
序	$t_{\rm R}/{\rm min}$	实测相对	理论相对	实测相对	理论相对	-	特征碎片		分子式	化合物
号		分子质量	分子质量	分子质量	分子质量					
1	0.957	116.071 07	116.070 61	-	-	(+)70.066 00			C5H9NO2	L-脯氨酸
2	0.995	130.086 50	130.086 26	_	_	(+)84.081 58, 112	2.087 30		C ₆ H ₁₁ NO ₂	D-高脯氨酸
3	1.311	268.104 28	268,104.03	_	_	(+)136.062.01			C10 H12N5O	2 時期 300
4	1 3 3 1	284 099 03	284 098 95	_	_	(+)150.002 01	122 014 60		CueHuNeOr	+ 四百井
5	1 / 91	122 102 10	132 101 01	_	_	(+)150.04131, 1	12 0(4 10		C.H. NO.	
6	1.401	132.102 10	132.101 91	-	-	(+)86.09/18, 11	13.964 19		C II O	L-完安酸
0	1.570	-	_	1/3.008 31	1/5.009 01	(-)154.997 /4, 1	111.00/69		$C_6\Pi_6O_6$	
/	1.5//	_	_	205.035.08	205.035.38	(-)173.008 51, 1	129.018 30,	111.007 69	$C_7H_{10}O_7$	3-hydroxy-3-(methoxycarbonyl) pentanedioic acid
0	2.122	-	-	225.001 45	223.078.08	(-)181.097.58, 1	1/9.054 95	150 050 00	C 10H14N2O4	1 胆巴系原
9	3.805	188.07070	188.070.61	-	-	(+)144.080 83, 1	118.065 43,	170.059 98,	$C_{11}H_9NO_2$	(E)-3-吲哚内烯酸
10	4.054	298.097.10	298.096.84	_	_	(+)136.060.12			C11H15N5O2S	5 5'-S-methyl-5'-thioadenosine
11	4 4 9 1			175 060 56	175 061 20	()131.070.37	157 049 76	115 030 02	CaHuaOc	 2-员丙其苯里酸
11	1.171	-	-	175.000 50	175.001 20	(-)131.070 37, 1	85 064 70	115.059.02,	0/11/205	2-开门至平木取
12	5 865	_	_	163 039 26	163 040 07	()110.040.10	02 022 55		C ₂ H ₂ O ₂	对教其肉样酸
12	5 9 5 9	241 070 83	241 070 66	105.057 20	105.040 07	(-)119.049 19, 9	200 044 45	101 022 96	CuHuO	(3RAS) - A = 6.8 - tribydroxy - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
15	5.959	241.070 85	241.070 00	-	-	(+)223.060 07, 2	209.044 45, 45.028 46	191.033 86,	C11111206	methoxy-3-methyl-3,4-dihydro -1H-isochromen-1-one
14	5.960	209.044 66	209.044 45	_	_	(+)163.038 93,	191.033 94		$C_{10}H_8O_5$	秦皮素
15	6.080	135.044 27	135.044 06	_	_	(+)117.033 78, 1	107.049 54,	79.054 94	C ₈ H ₆ O ₂	邻苯二甲醛
16	6.086	-	-	191.055 45	191.056 11	(-)173.044 77, 1	127.039 09.	109.028 56	C7H12O6	右旋奎宁酸
17	6.092	163.039 08	163.038 97	_	_	(+)145.028.50	135.044.17.	107.049.55	C ₉ H ₆ O ₃	7-羟基香豆素
18	6.098	_	_	353.088.01	353.087.81	$(-)191\ 055\ 59\ 1$	173 044 95	161.023.48	C16H12O0	1-咖啡融奎宁酸
19	7 197	_	_	353 088 01	353 087 81	()191.055.51 1	173 044 72	161.023.50	CicHieOo	是「一 ¹ 」。1 段
20	8 166			403 124 03	403 124 58	(-)191.03551, 1	173.04472,	222.060.78	Cu-Ha Ou	東京 板 斯 気 化 ユ 桂 芋
20	0.100	_	_	405.124 75	405.124 50	(-)3/1.098 03, 2	01 024 54	223.000 78,	01/11/24011	町戦化→戎日
21	9 592	287 055 21	287 055 01	_		$(\pm)250,060,15$	221 065 80	152 018 26	Cuthan	山本融
21	1.572	207.055 21	207.055.01			127 022 27 1	65 018 21	155.018 20,	015111006	山永助
22	9 595	_	_	609 147 00	609 146 11	()285.040.70	05.018 51	227 024 71	CarHaoOu	サー
22	10 113	303 050 38	303 049 93	009.117 00	009.110 11	(-)285.07070, 2	255.02775,	227.054 71	C. H. O.	入 1 多共志
25	10.115	505.050 50	505.047 75			(+)203.030 91, 2	52 010 20	127 022 52	015111007	米貝系
24	10 120			463 088 90	463 088 20	()201 025 20	33.01020,	282 025 07	CarHarOra	今仙州井
24	10.120			405.000 70	405.000 20	(-)301.033.80, 2	271.023 09, 142.020 70	283.025 97,	0211120012	壶 丝 彻 日
25	10 290			463 089 08	463 088 20	$(-)301\ 035\ 68$.43.02979		CarHarOra	县构内井
25	10.270	_		405.007 00	405.000 20	(-)301.035.08	255 020 00		$C_{21}H_{20}O_{12}$	开 佣 反 日 此 二 支 古
20	11.104	7		515 120 00	447.093 20	(-)285.040 59, 2	255.029.98	150 004 44	$C_{21} \Pi_{20} O_{11}$	系云央百
27	11.104			515.120 00	515.119 50	(-)353.088 17, 1	191.055 59,	1/9.034 44,	$C_{25}H_{24}O_{12}$	开球原酸 A
28	16.320		_	327.217.83	327 217 70	()309 205 23	201 105 80	211 133 58	C18H22Os	corchorifatty acid F
	101020			5271217 05	52/121/10	171.101.90	2)1.1)5 0),	211.155 50,	018113203	
29	16.667	471.347 14	471.346 89			(+)453.336.36, 4	425.341 06,	407.329 71	C30H46O4	甘草次酸
30	17.271	_	- 1	221.081 70	221.081 93	(-)165.018 23. 1	177.091.45.	121.028 42.	$C_{12}H_{14}O_{4}$	邻苯二甲酸单丁酯
						149.096 21. 1	47.008 19	,		
31	18.035	_	>	955.491 15	955.490 80	(-)793.433.96. 4	455.356.17		C48H76O19	人参皂苷 Ro
32	22.351	_		265.148 16	265.147 90	(-)96.958 97			C12H26O4S	dodecvl sulfate
33	27.833	318,300 57	318,300 27	_	_	(+)300 289 76	282 279 08	264 258	$C_{18}H_{20}NO_{2}$	2-amino-1.3.4-octadecanetriol
						40,60.045 28	202.279.00,	204.230	. 10591 . 03	,=,
34	28.128	279.159 18	279.159 09	-	-	(+)223.094 53, 2 121.037 87	205.085 02,	149.023 41,	$C_{16}H_{22}O_4$	dibutyl phthalate
35	30.771	403.233 25	403.232 64	_	_	(+)273.098 48, 2	259.153 84,	185.080 86	$C_{20}H_{34}O_8$	citroflex A-4
36	31.140	_	_	271.228 15	271.227 87	(-)59.012 63	,		$C_{16}H_{32}O_3$	16-羟基棕榈酸
37	31.744	355.284 55	355.284 29	_	_	(+)337.273 22.	281.248 44.	263.236 76	C21H38O4	1-linoleoyl glycerol
20	41.097	340.357 36	340.357 39	_	_	(+)284.294 80, 2	228.138 11,	200.069 60	C ₂₂ H ₄₅ NO	二十二酰胺

的生物碱类化合物,因此,该类化合物的裂解规 律为以失去环外侧链为主要特征。分析此类化合 物的裂解规律时发现,化合物3在正离子模式下, 其 m/z [M+H]⁺为 268.104 28,在进一步的质谱裂解 过程中,其准分子离子峰脱去糖链(C₅H₉O₄)并从糖 链上回收 1 个氢原子,形成特征碎片离子 *m/z* 136.062 01 [M-C₅H₈O₄+H]⁺;化合物 4 在正离子模 式下,其 *m/z* [M+H]⁺为 284.099 03,在进一步的

· 1724 · Chin J Mod Appl Pharm, 2022 July, Vol.39 No.13

中国现代应用药学 2022 年 7 月第 39 卷第 13 期

质谱裂解过程中,其准分子离子峰脱去1个糖分 子(C5H9O4)形成特征碎片离子 m/z 150.041 31 [M-C₅H₉O₄]⁺,而糖分子本身也形成特征碎片离子 m/z 133.014 60 [C5H8O4+H]+,符合巴豆苷的裂解规 律; 化合物 8 在负离子模式下, 其 m/z [M-H]-为 225.061 43, MS² 碎片离子 *m/z* 181.097 58, 179.054 95,在进一步的质谱裂解过程中,其准分 子离子峰脱去一分子 CO2 形成特征碎片离子 m/z 181.097 58 [M-CO2-H]-, 丢失一分子 HCOOH 形成 特征碎片离子 m/z 179.054 95 [M-HCOOH-H]-, 符 合胆色素原的裂解规律; 化合物 9 在正离子模式 下,其 m/z [M+H]⁺为 188.0707, MS² 碎片离子 *m/z* 170.059 98, 146.060 12, 144.080 83, 118.065 43, 在进一步的质谱裂解过程中,其准分子离子峰脱 去一分子 CO2 形成特征碎片离子 m/z 144.080 83 [M-CO₂+H]⁺, 脱去侧链则形成特征碎片离子 m/z 118.065 43 [M-C₃H₂O₂+H]⁺,准分子离子峰脱去一 分子 H₂O 形成特征碎片离子 m/z 170.059 98 [M-H₂O+H]⁺, 失水并失去乙烯, 过程中从脱去的乙 烯中吸引 2 个氢原子,形成特征碎片离子 m/z 146.060 12 [M-C₂H₂O+H]+; 化合物 10 在正离子模 式下,其 m/z [M+H]⁺为 298.097 1, MS²碎片离子 m/z136.06194,在进一步的质谱裂解过程中,其准 分子离子峰脱去一分子糖支链 CH₃SCH₂C₄H₆O₃, 断裂部位吸收1个氢原子,形成特征碎片离子 m/z 136.061 94 [M- CH₃SCH₂C₄H₅O₃+H]⁺。

3.3.3 有机酸类化合物 从水冬瓜叶甲醇提取物 中共推测出 10 个有机酸类化合物,其中化合物 6, 7,11,13,16,18,19,27,28,36 分别为 trans-aconitic acid, 3-hydroxy-3-(methoxycarbonyl) pentanedioic acid, 2- 异丙基苹果酸、(3R,4S)-4,6,8-trihydroxy-7-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1one、右旋奎宁酸、1-咖啡酰奎宁酸、绿原酸、异 绿原酸 A、corchorifatty acid F、16-羟基棕榈酸, 这10个化合物结构相似,均为有机酸类化合物。 通常,该类化合物的裂解规律:当化合物含多个 羧酸基的有机酸类化合物,其裂解方式以失去 H₂O、CO₂或 HCOOH 为特征,如化合物 6, 7, 8, 11 等;当化合物为含多个羟基的环己烷取代羧酸, 其裂解方式失去环己烷的侧链和脱水为主,如化 合物 16, 18, 19, 27 等; 当化合物为直链烃的 a-取代羧酸,其直链上含有多个羟基时易产生失去 H₂O 的碎片,而无取代的直链烷烃,其烷基部分 不易裂解,只产生 CH₃COO⁻特征离子碎片,如化

中国现代应用药学 2022 年 7 月第 39 卷第 13 期

合物 28,36 等。分析此类化合物的裂解规律时发 现, 化合物 6 在负离子模式下, 其 m/z [M-H]-为 173.008 51, 在进一步的质谱裂解过程中, 其准分 子离子峰脱 H₂O, 形成特征碎片离子 m/z 154.997 74 [M-H₂O-H]⁻, 脱水同时脱 CO₂ 形成特 征碎片离子 m/z 111.007 69 [M-H2O-CO2-H]-; 化合 物7在负离子模式下,其m/z [M-H]-为 205.035 08, 在进一步的质谱裂解过程中,其准分子离子峰丢 失一分子 HCOOH 形成特征碎片离子 m/z 173.008 51 [M-HCOOH-H]-, 丢失一分子 HCOOH 及 CH₃OH 形成特征碎片离子 m/z 129.018 30 [M-HCOOH-CH₃OH-H]⁻,脱去一分子 H₂O、 HCOOH 及 CH₃OH 形成特征碎片离子 m/z 111.007 69 [M-CH3OCOOH-H2O-H]-; 化合物 11 在 负离子模式下,其 m/z [M-H] 为 175.060 56, MS² 碎片离子 m/z 131.070 37, 157.049 76, 115.039 02, 113.05973,在进一步的质谱裂解过程中,其准分 子离子峰脱去一分子 CO2 形成特征碎片离子 m/z 131.070 37 [M-CO2-H]-, 其准分子离子峰脱去一分 子 H₂O 形成特征碎片离子 m/z 157.04976 [M-H2O-H]-, 其准分子离子峰脱去一分子乙酸形成 特征碎片离子 m/z 115.039 02 [M-CH3COOH-H]-, 其准分子离子峰脱去一分子 H2O 并脱去一分子 CO2 形成特征碎片离子 m/z 113.05973 [M-CO₂-H₂O-H]⁻,其准分子离子峰脱去一分子 HCOOH并脱去一分子 CH2(CH3)2 形成特征碎片离 子 m/z 85.064 70 [M-HCOOH-CH2(CH3)2-H]-, 符合 2-异丙基苹果酸的裂解规律; 化合物 13 在正离子 模式下,其 m/z [M+H]+为 241.070 83, MS²碎片离 $\neq m/z$ 223.060 07, 209.044 45, 191.033 86, 177.054 61, 145.028 46, 在进一步的质谱裂解过 程中,其准分子离子峰脱去一分子 H₂O 形成特征 碎片离子 m/z 223.060 07 [M-H₂O+H]⁺, 其准分子 离子峰脱去一分子 CH₃OH 形成特征碎片离子 m/z 209.044 45 [M-CH₃OH+H]⁺,其准分子离子峰脱去 一分子CH3OH并脱去一分子H2O形成特征碎片离 子 m/z 191.033 86 [M-CH₃OH-H₂O+H]⁺,其准分子 离子峰脱去一分子 HCOOH 并脱去一分子 H2O 形成 特征碎片离子 m/z 177.054 61 [M-HCOOH-H₂O+H]+, 其准分子离子峰脱去一分子 HCOOH、脱去一分子 H₂O 并脱一分子 CH₃OH 形成特征碎片离子 m/z 145.028 46 [M-HCOOH-H₂O-CH₃OH+H]⁺; 化合物 16 在负离子模式下,其 m/z [M-H]-为 191.055 45,

MS² 碎片离子 m/z 173.044 77, 127.039 09, 109.028 56,在进一步的质谱裂解过程中,其准分 子离子峰脱去一分子 H2O 形成特征碎片离子 m/z 173.044 77 [M-H2O-H]-, 其准分子离子峰脱去一分 子 H₂O 并脱去一分子 HCOOH 形成特征碎片离子 *m/z* 127.039 09 [M-H₂O-HCOOH-H]⁻, 脱去 2 分子 H₂O并脱去一分子 HCOOH 形成特征碎片离子 m/z 109.028 56 [M-2H₂O-HCOOH-H]⁻,符合右旋奎宁 酸的裂解规律; 化合物 18 在负离子模式下, 其 m/z [M-H]⁻为 353.088 01, MS² 碎片离子 m/z 191.055 59, 173.044 95, 161.023 48, 在进一步的 质谱裂解过程中,其准分子离子峰酯基断开脱去 乙烯基邻二酚部分 C₉H₆O₃形成特征碎片离子 m/z 191.055 59 [M-C9H6O3-H]-, 又脱去一分子 H2O 形成 特征碎片离子 m/z 173.044 95 [M-C9H6O3-H2O-H]-, 其准分子离子峰酯基断开后,失去环烷基部分 C7H11O6 形成特征碎片离子 m/z 161.023 48 [M-C7H11O6-H]-; 化合物 19 在负离子模式下, 其 *m/z* [M-H]⁻为 353.088 07, MS² 碎片离子 *m/z* 191.055 51, 173.044 72, 161.023 50, 在进一步的 质谱裂解过程中,其准分子离子峰酯基断开脱去 乙烯基邻二酚部分 C₉H₆O₃形成特征碎片离子 m/z 191.055 51 [M-C₉H₆O₃-H]⁻, 又脱去一分子 H₂O 形成 特征碎片离子 m/z 173.044 72 [M-C9H6O3-H2O-H]-, 其准分子离子峰酯基断开后,失去环烷基部分 C7H11O6 形成特征碎片离子 m/z 161.023 50 [M-C₇H₁₁O₆-H]⁻,符合绿原酸的裂解规律;化合物 27 在负离子模式下,其 m/z [M-H]-为 515.120 00, MS² 碎片离子 m/z 353.088 17, 191.055 59, 179.034 44, 135.044 19, 在进一步的质谱裂解过 程中,其准分子离子峰酯基断开脱去结构中一分 子邻二酚部分 C₉H₆O₃ 形成特征碎片离子 m/z 353.088 17 [M-C9H6O3-H]-, 其准分子离子峰酯基 断开脱去结构中左侧与右侧共 2 分子邻二酚部分 C₉H₆O₃ 形成特征碎片离子 m/z 191.055 59 [M-2C9H6O3-H]⁻, 酯基也可在与环己烷连接处的 C-O 键断裂, 邻二酚部分形成负离子 m/z 179.034 44 [C₆H₃(OH)₂C₂H₂COOH-H]⁻,如果乙烯 基与羧酸基之间断裂,则形成负离子 m/z 135.044 19 [C₆H₃(OH)₂C₂H₃-H⁻,符合异绿原酸 A 的裂解规 律; 化合物 28 在负离子模式下, 其 m/z [M-H]-为 327.217 83, MS² 碎片离子 *m/z* 309.205 23, 291.195 89, 211.133 58, 171.101 90, 在进一步的

质谱裂解过程中,其准分子离子峰脱去一分子 H₂O 形成特征碎片离子 m/z 309.205 23 [M-H₂O-H]⁻,其 准分子离子峰脱去 2 分子 H₂O 形成特征碎片离子 m/z 291.195 89 [M-2H₂O-H]⁻,相邻羟基之间的 C-C 键断裂同时失去一分子 H₂O 形成特征碎片离子 m/z 211.133 58 [M-C₆H₁₁O-H₂O-H]⁻,9 位的羟基与 相邻烯基之间断裂,形成特征碎片离子 m/z 171.101 90 [M-C₉H₁₅O₂-H]⁻;化合物 36 在负离子 模式下,其 m/z [M-H]⁻为 271.228 15, MS²碎片离 子 m/z 59.012 63,在进一步的质谱裂解过程中,其 准分子离子峰断裂后的乙酸负离子 CH₃COO⁻,形 成特征碎片离子 m/z 59.012 63 [CH₃COO⁻]⁻。

3.3.4 苯丙素类化合物 从水冬瓜叶甲醇提取物 中共推测出3个苯丙素类化合物,其中化合物12, 14, 17 分别为对羟基肉桂酸、秦皮素、7-羟基香 豆素,这3个化合物结构相似,均为苯丙素类化合 物。通常,该类化合物的裂解规律:其准分子离子 峰易脱去侧链,如化合物12;或化合物裂解过程中 均易失去 CO, 如化合物 14, 17 等。分析此类化合 物的裂解规律时发现, 化合物 12 在负离子模式下, 其 m/z [M-H] 为 163.039 26, MS² 碎片离子 m/z 119.049 19, 93.033 55, 在进一步的质谱裂解过程 中,其准分子离子峰脱去一分子 CO2 形成特征碎 片离子 m/z 119.049 19 [M-CO2-H]-, 准分子离子峰 脱去一分子 COOHCH=CH 形成特征碎片离子 m/z 93.033 55 [M-COOHCH=CH]-, 符合对羟基肉桂酸 的裂解规律; 化合物 14 在正离子模式下, 其 m/z [M+H]⁺为 209.044 66, MS²碎片离子 m/z 163.038 93, 191.033 94, 在进一步的质谱裂解过程中, 其准分 子离子峰脱去一分子 H2O 和一分子 CO 形成特征 碎片离子 m/z 163.038 93 [M-H2O-CO+H]+, 其准分 子离子峰脱去一分子 H2O 形成特征碎片离子 m/z 191.033 94 [M-H₂O+H]⁺,符合秦皮素的裂解规律; 化合物 17 在正离子模式下,其 m/z [M+H]+为 163.039 08, MS² 碎片离子 m/z 145.028 50, 135.044 17, 107.049 55, 在进一步的质谱裂解过程 中,其准分子离子峰脱去一分子 H2O 形成特征碎片 离子 m/z 145.028 50 [M-H₂O+H]⁺, 其准分子离子峰 脱去一分子 CO 形成特征碎片离子 m/z 135.044 17 [M-CO+H]⁺,其准分子离子峰脱去2分子CO形成 特征碎片离子 m/z 107.049 55 [M-2CO+H]+, 符合 7-羟基香豆素的裂解规律。

3.3.5 芳香含氧衍生物类化合物 从水冬瓜叶甲

醇提取物中共推测出 3 个芳香含氧衍生物类化合 物,其中化合物15,30,34分别为邻苯二甲醛、 邻苯二甲酸单丁酯、dibutyl phthalate。由于该类化 合物为含有邻位的二羰基取代基的化合物,因此, 该类化合物的裂解规律以失去侧链或酯基断裂为 主要特征。分析此类化合物的裂解规律时发现, 化合物 15 在正离子模式下,其 m/z [M+H]+为 135.044 27, MS² 碎片离子 *m/z* 117.033 78, 107.049 54, 79.054 94, 在进一步的质谱裂解过程 中,其准分子离子峰脱去一分子 H₂O 形成特征碎 片离子 m/z 117.033 78 [M-H₂O+H]⁺,其准分子离子 峰脱去一分子 CO 形成特征碎片离子 m/z 107.049 54 [M-CO+H]+, 其准分子离子峰脱去 2 分子 CO形成特征碎片离子 m/z 79.054 94 [M-2CO+H]+; 化合物 30 在负离子模式下,其 m/z [M-H]-为 221.081 70, MS² 碎片离子 m/z 165.018 23, 177.091 45, 121.028 42, 149.096 21, 147.008 19, 在进一步的质谱裂解过程中,其准分子离子峰脱 去一分子 C4H9 形成特征碎片离子 m/z 165.018 23 [M-C₄H9]⁻,其准分子离子峰脱去一分子 CO2形成 特征碎片离子 m/z 177.091 45 [M-CO2-H]-, 其准分 子离子峰脱去一分子失去酯基侧链形成特征碎片 离子 m/z 121.028 42 [M-C₄H₉COO]⁻, 侧链酯基断 裂失去丁氧基,根据进一步失去或得到一分子氢 的不同,分别形成特征碎片离子 m/z 149.096 21 [M-C4H9OH-H]⁻和 *m/z* 147.008 19 [M-C4H8O-H]⁻; 化合物 34 在正离子模式下, 其 m/z [M+H]+为 279.159 18, MS² 碎片离子 *m/z* 223.094 53, 205.085 02, 149.023 41, 121.037 87, 在进一步的 质谱裂解过程中,其准分子离子峰脱去一分子 (CH₂)₃CH₃ 形成特征碎片离子 m/z 223.094 53 [M-(CH₂)₃CH₃]⁺,其准分子离子峰脱去一分子 O(CH₂)₃CH₃ 形成特征碎片离子 m/z 205.085 02 [M-O(CH₂)₃CH₃]⁺,其准分子离子峰脱去一分子 O(CH₂)₃CH₃, 丢失一分子(CH₂)₃CH₃, 形成特征碎片 离子 m/z 149.023 41 [M-O(CH2)3CH3-(CH2)3CH3+H]+, 又脱去一分子 CO 形成特征碎片离子 m/z 121.037 87 [M-O(CH₂)₃CH₃-(CH₂)₃CH₃-CO+H]⁺.

3.3.6 萜类化合物 从水冬瓜叶甲醇提取物中共 推测出 3 个萜类化合物,其中化合物 20,29,31 分别为断氧化马钱苷、甘草次酸、人参皂苷 Ro, 这 3 个化合物结构相似,均为萜类化合物。通常, 该类化合物的裂解规律:针对成苷的萜类化合物,

在质谱条件下易失去糖链, 苷元本身根据结构不 同产生失去 H₂O、CO、CO₂、CH₃OH 的特征碎片 离子。分析此类化合物的裂解规律时发现, 化合 物 20 在负离子模式下,其 m/z [M-H]-为 403.124 93, MS² 碎片离子 *m/z* 371.098 63, 241.071 67, 223.060 78, 179.070 69, 191.034 54, 在进一步的质谱裂解过程中,其准分子离子峰脱 去一分子 CH₃OH 形成特征碎片离子 m/z 371.098 63 [M-CH₃OH-H]⁻,其准分子离子峰醚键断裂脱去饱 和含氧六环 C₆H₁₁O₅ 形成特征碎片离子 m/z 241.071 67 [M-C₆H₁₁O₅], 又失去一分子 H₂O 形成 特征碎片离子 m/z 223.060 78 [M-C₆H₁₁O₅-H₂O]-, 接着又失去一分子 CO2 或一分子 CH3OH, 分别形 成特征碎片离子 m/z 179.070 69 [M-C₆H₁₁O₅-CO₂]-, m/z 191.034 54 [M-C6H11O5-CH3OH]-, 符合断氧化 马钱苷的裂解规律; 化合物 29 在正离子模式下, 其 m/z [M+H]+为 471.347 14, MS² 碎片离子 m/z 453.336 36, 425.341 06, 407.329 71, 在进一步的 质谱裂解过程中,其准分子离子峰脱去一分子H2O 形成特征碎片离子 m/z 453.336 36 [M-H₂O+H]+, 其准分子离子峰脱去一分子 CO 和 H₂O 形成特征 碎片离子 m/z 425.341 06 [M-CO-H2O]+, 其准分子 离子峰脱去一分子 CO 并丢失 2 分子 H₂O 形成特 征碎片离子 m/z 407.329 71 [M-CO-2H2O]+,符合甘 草次酸的裂解规律; 化合物 31 在负离子模式下, 其 m/z [M-H]-为 955.491 15, MS² 碎片离子 m/z 793.433 96, 455.356 17, 在进一步的质谱裂解过 程中,其准分子离子峰脱去一分子糖支链 Glc 并减 H形成特征碎片离子 m/z 793.433 96 [M-Glc-H]-, 其准分子离子峰再脱去一分子糖支链 Glc 基础上, 又丢失一分子糖支链 GlcUA 并减 H形成特征碎片 离子 m/z 455.356 17 [M-Glc-GlcUA-H]-, 与文献[12] m/z 793.7, 455.5 基本一致, 符合人参皂苷 Ro 的 裂解规律。

3.3.7 黄酮类化合物 从水冬瓜叶甲醇提取物中 共推测出 6 个黄酮类化合物,其中化合物 21,22, 23,24,25,26 分别为山奈酚、芦丁、桑黄素、 金丝桃苷、异槲皮苷、紫云英苷,这 6 个化合物 结构相似,均为黄酮类化合物。通常,该类化合 物的裂解规律:根据该类化合物为苷或苷元而裂 解方式不同。当该类化合物为苷元时,其裂解方 式为黄酮 C 环的断裂,其中 1-O 的两侧,酮羰基 的两侧均是易于断裂的部位,如化合物 21,23 等;

中国现代应用药学 2022 年 7 月第 39 卷第 13 期

当该类化合物成苷时,其裂解方式均为失去糖链, 失去 CH₂O, 失去 CO, 如化合物 22, 24, 25, 26 等。分析此类化合物的裂解规律时发现,化合物 21 在正离子模式下,其 m/z [M+H]+为 287.055 21, MS² 碎片离子 *m/z* 259.060 15, 231.065 89, 153.018 26, 137.023 27, 165.018 31, 在进一步的 质谱裂解过程中,其准分子离子峰脱去一分子 CO 形成特征碎片离子 m/z 259.060 15 [M-CO]+, 其准 分子离子峰脱去 2 分子 CO 形成特征碎片离子 m/z 231.065 89 [M-2CO+H]+, 黄酮 C 环中氧与 2 位碳 之间断裂,同时3,4位碳之间断裂形成特征碎片 离子 m/z 153.018 26 [M-C₈H₆O₂+H]⁺, 黄酮 C 环中 氧与 A 环之间断裂,同时 3,4 位碳之间断开形成 特征碎片离子 m/z 137.023 27 [M-C₈H₆O₃+H]⁺, 黄 酮 C 环中氧与 A 环之间断裂,同时 2,3 位碳之间 断开形成特征碎片离子 m/z 165.01831 [M-C7H5O2+H]+, 与文献[13]报道山奈酚的特征碎 片离子 m/z 153.0180 基本一致,符合山奈酚的裂 解规律:化合物 22 在负离子模式下,其 m/z [M-H]-为 609.147 00, MS² 碎片离子 m/z 285.040 70, 255.029 95, 227.034 71, 在进一步的质谱裂解过 程中,其准分子离子峰脱去一分子芸香糖 C12H22O10 形成特征碎片离子 m/z 285.04070 [M-C12H22O10]-, 其准分子离子峰脱去一分子芸香 糖 C12H22O10 及 CH2O,形成特征碎片离子 m/z 255.029 95 [M-C12H22O10-CH2O]-, 其准分子离子 峰脱去一分子芸香糖 C12H22O10 及 CH2O、CO, 形成特征碎片离子 m/z 227.034 71 [M-C12H22O10-CH2O-CO下, 符合芦丁的裂解规律; 化合物 23 在 正离子模式下,其 m/z [M+H]⁺为 303.050 38, MS² 碎片离子 m/z 285.038 91, 257.044 19, 247.060 53, 165.018 46, 153.018 28, 137.023 53, 在进一步的 质谱裂解过程中,其准分子离子峰脱去一分子H2O 形成特征碎片离子 m/z 285.038 91 [M-H₂O+H]+, 其 准分子离子峰脱去一分子 H₂O、失去一分子 CO 形 成特征碎片离子 m/z 257.044 19 [M-H2O-CO+H]+, 黄酮 C 环中 4 位的碳与 A 环之间断裂,同时 2,3 位碳之间断开, 丢失 2 个 CO 形成特征碎片离子 m/z 247.060 53 [M-2CO+H]+, 黄酮 C 环中 1 位的 氧与 A 环之间断裂,同时 2,3 位碳之间断开形成 特征碎片离子 m/z 165.018 46 [M-C7H5O3+H]+, 黄 酮 C 环中 1 位的氧与 2 位的碳原子之间断裂,同 时 3,4 位碳之间断开形成特征碎片离子 m/z

153.018 28 [M-C₈H₆O₃+H]⁺, 黄酮 C 环中 1 位的氧 与 A 环之间断裂,同时 3,4 位碳之间断开形成特 征碎片离子 m/z 137.023 53 [M-C₈H₆O₃+H]⁺,符合 桑黄素的裂解规律; 化合物 24 在负离子模式下, 其 m/z [M-H]⁻为 463.088 90, MS² 碎片离子 m/z 301.035 80, 271.025 09, 283.025 97, 255.029 92, 243.029 79, 在进一步的质谱裂解过程中, 其准 分子离子峰脱去一分子糖 C₆H₁₁O₅形成特征碎片 离子 m/z 301.035 80 [M-C₆H₁₁O₅-H]⁻,在此基础 上,其准分子离子峰分别脱去一分子 HCHO 或脱 去一分子 H₂O 或脱去一分子 H₂O 与一分子 CO 或其准分子离子峰分别脱去一分子 HCHO 与一 分子 CO, 分别形成特征碎片离子 m/z 271.025 09 [M-C₆H₁₁O₆-HCHO]⁻, *m*/*z* 283.025 97 [M-C₆H₁₁O₆- H_2O^- , *m/z* 255.029 92 [M-C₆H₁₁O₆-H₂O-CO]⁻, *m/z* 243.029 79 [M-C₆H₁₁O₆-HCHO-CO]⁻,符合金丝桃 苷的裂解规律; 化合物 25 在负离子模式下, 其 m/z [M-H]⁻为 463.089 08; MS² 碎片离子 m/z 301.035 68。在进一步的质谱裂解过程中,其准分 子离子峰脱去一分子糖 C₆H₁₁O₅ 形成特征碎片离 子 m/z 301.035 68 [M-C₆H₁₁O₅-H]-, 与文献[5]报道 quercetin-3-O-glucoside m/z 300 [M-C6H11O5-H] 相 符,符合异槲皮苷的裂解规律;化合物 26 在负离 子模式下,其 m/z [M-H]-为 447.093 87, MS²碎片 离子 m/z 285.040 59, 255.029 98, 在进一步的质谱 裂解过程中,其准分子离子峰脱去一分子糖 C₆H₁₁O₅ 形成特征碎片离子 m/z 285.040 59 [M-C₆H₁₁O₅-H]⁻,与文献[5]报道相符,又脱去一分 子 CH₂O, 形成特征碎片离子 m/z 255.029 98 [M-C₆H₁₁O₅-CH₂O]⁻,符合紫云英苷的裂解规律。 3.3.8 酰胺类化合物 从水冬瓜叶甲醇提取物中 共推测出1个酰胺类化合物。化合物38在正离子 模式下,其 m/z [M+H]+为 340.357 36, MS²碎片离 子 m/z 284.294 80, 228.138 11, 200.069 60, 在进 一步的质谱裂解过程中,其准分子离子峰脱去一 分子丁基形成特征碎片离子 m/z 284.294 80 [M-C₄H₁₁+H]⁺,其准分子离子峰脱去2分子丁基形 成特征碎片离子 m/z 228.138 11 [M-2C4H11+H]+, 其准分子离子峰脱去 2 分子丁基、又失去一分子 C2H4形成特征碎片离子 m/z 200.069 60 [M-2C4H11- $2CH_2+H^{+}_{\circ}$

3.3.9 其他类化合物 从水冬瓜叶甲醇提取物中 共推测出 4 个其他类化合物,其中化合物 **32**, **33**,

35、37 分别为 dodecyl sulfate、2-amino-1,3,4octadecanetriol, citroflex A-4, 1-linoleoyl glycerol, 分析此类化合物的裂解规律时发现, 化合物 32 在 负离子模式下,其 m/z [M-H]⁻为 265.148 16, MS² 碎片离子 m/z 96.958 97,在进一步的质谱裂解过程 中,其准分子离子峰烃与氧断开,脱去一分子 H₃C(CH₂)11 形成特征碎片离子 m/z 96.958 97 [M-H₃C(CH₂)₁₁-H[¬]; 化合物 33 在正离子模式下, 其 m/z [M+H]⁺为 318.300 57, MS² 碎片离子 m/z 300.289 76, 282.279 08, 264.258 40, 60.045 28, 在进一步的质谱裂解过程中,其准分子离子峰脱 去一分子 H2O 形成特征碎片离子 m/z 300.289 76 [M-H₂O+H]⁺, 其准分子离子峰脱去 2 分子 H₂O 形 成特征碎片离子 m/z 282.279 08 [M-2H₂O+H]⁺,其 准分子离子峰脱去 3 分子 H₂O 形成特征碎片离子 m/z 264.258 40 [M-3H2O+H]+, 氨基与相邻羟基之 间的 2 个碳断裂形成特征碎片离子 m/z 60.045 28 [NH₂C₂H₂OH+H]⁺; 化合物 35 在正离子模式下, 其 m/z [M+H]+为 403.233 25, MS² 碎片离子 m/z 273.098 48, 259.153 84, 185.080 86, 在进一步的 质谱裂解过程中,其准分子离子峰脱去一分子 O(CH2)3CH3 与丢失一分子(CH2)3CH3 缩合成含二 酮的五元环醚,形成特征碎片离子 m/z 273.098 48 [M-O(CH₂)₃CH₃-(CH₂)₃CH₃+H]⁺,其准分子离子峰 脱去2分子O(CH₂)₃CH₃并加H形成特征碎片离子 m/z 259.153 84 [M-2O(CH2)3CH3+H]+, 其准分子离 子峰脱去3分子O(CH2)3CH3并补H形成特征碎片 离子 m/z 185.080 86 [M-3O(CH2)3CH3+H]+; 化合物 37 在正离子模式下,其 m/z [M+H]+为 355.284 55, MS² 碎片离子 *m/z* 337.273 22, 281.248 44, 263.236 76, 在进一步的质谱裂解过程中, 其准分 子离子峰脱去一分子 H2O 形成特征碎片离子 m/z 337.273 22 [M-H₂O+H]⁺,其准分子离子峰脱去一 分子 H₂O 又脱去一分子丁基形成特征碎片离子 *m/z* 281.248 44 [M-H₂O-C₄H₁₁+H]⁺,其准分子离子 峰脱去 2 分子 H₂O 又脱去一分子丁基形成特征碎 片离子 m/z 263.236 76 [M-2H₂O-C₄H₁₁+H]⁺。

3.4 化合物的验证

通过 HPLC、TLC 和文献比对 3 个方面验证化 合物 17, 20, 24, 25, 初步评价 HPLC-HESI-HRMS 推测化合物的准确性。采用 HPLC, 分别比较 7-羟基香豆素, 断氧化马钱苷, 金丝桃苷, 异槲皮 苷对照品与样品中化合物 17, 20, 24, 25 保留时

间(t_R)差异性,结果表明 7-羟基香豆素、断氧化马 钱苷、金丝桃苷,异槲皮苷对照品分别与化合物 17, 20, 24, 25 的 t_R相比差异均<0.1 min。比较 TLC 荧光特征与比移值(Rf值),发现在药材样品溶 液、7-羟基香豆素、断氧化马钱苷、金丝桃苷、异 槲皮苷对照品色谱相应的位置上分别显相同颜色 的斑点,且 Rf值一致。查阅文献,发现化合物 17 在正离子模式下 MS² 碎片离子 m/z 107.049 55 [M-2CO+H]⁺, 与文献[14]报道中有关 7-羟基香豆 素 m/z 107.0 与本研究相符,符合 7-羟基香豆素的 裂解规律; 化合物 20 在负离子模式下, 其 m/z [M-H]⁻为 403.124 93, MS²碎片离子 m/z 371.098 63 [M-CH₃OH-H]⁻, *m/z* 223.060 78 [M-C₆H₁₁O₅-H₂O]⁻, *m/z* 179.070 69 [M-C₆H₁₁O₅-CO₂]⁻, 与文献[15]报道 断氧化马钱苷(secoxyloganin) m/z [M-H]-为 403, 371, 223 和 179 相符, 符合断氧化马钱苷的裂解 规律; 化合物 24 在负离子模式下, 其 m/z [M-H]-为 463.088 90, MS² 碎片离子 m/z 271.025 09 [M-C₆H₁₁O₆-HCHO]⁻,与文献[16-17]报道金丝桃苷 *m/z* [M-H]⁻为 463.094 5, *m/z* 271 [M-H-C₆H₁₀O₅-HCHOT相符,符合金丝桃苷的裂解规律;化合物 25 在负离子模式下,其 m/z [M-H]-为 463.089 08, MS²碎片离子 m/z 300.027 92 [M-C₆H₁₁O₅-H]⁻, 与文 献[18]报道异槲皮苷分子量为 464.38, m/z [M-H]-为 463.1, MS² 碎片离子 m/z 300.0 相符, 符合异槲 皮苷的裂解规律。

○ 综上,初步鉴定出化合物 17,20,24,25 分 别为 7-羟基香豆素、断氧化马钱苷、金丝桃苷、 异槲皮苷,说明 HPLC-HESI-HRMS 对苗药水冬瓜 叶中的化学成分的初步推测具有一定的科学性。

4 讨论

液质联用技术在快速鉴别中药、民族药化学 成分中具有广泛应用^[19-21]。本研究基于 LC-HRMS 联用技术,在 HPLC 对化学成分实现高效分离的 基础上,通过 HRMS 可以直接获得准分子离子峰、 化学式,实测未知化合物 MS 特征碎片可精确到小 数后 5 位,比普通的 MS 具有显著优势。采用 HPLC-HESI-HRMS 技术,对水冬瓜叶药材甲醇提 取物中的主要化学成分进行分析,结合数据库关 联、文献报道等方法,初步鉴定了贵州特色民族 药水冬瓜叶中 38 种化学成分,建立的方法快速、 科学、准确度高,为明确贵州特色民族药水冬瓜 叶药材药效物质基础提供借鉴与参考。 综上所述,采用 HPLC-HESI-HRMS 技术可实 现快速、系统、准确地鉴定贵州特色民族药水冬 瓜叶中的化学成分,初步推测该植物药以有机酸 类化学成分、黄酮类化学成分及生物碱类成分为 主,最终阐明并揭示贵州特色民族药水冬瓜叶药 材的药效物质基础,为该药后期的综合利用与开发 奠定物质基础研究。同时,本研究为少数民族集聚 地或民族医疗机构临床施药提供科学依据,为民族 药药效物质基础研究提供方法借鉴与参考。

REFERENCES

- [1] 贵州省药品监督管理局.贵州省中药材、民族药材质量标准
 [M].贵阳:贵州科技出版社,2003:107.
- [2] ZHANG J W, GUO J R, TANG F, et al. Studies on the chemical constituents of *Toricellia angulata* var. intermedia[J]. J Chin Med Mater(中药材), 2010, 33(11): 1725-1727.
- [3] 王燕燕, 涂念, 张勇慧, 等. 大接骨丹化学成分研究(Ⅱ)[J]. 中草药, 2009, 40(10): 1551-1553.
- [4] ZHANG J W, GUO J R, TANG F, et al. Chemical constituents in root bark of *Toricellia angulata* var. *intermedia* (Ⅲ)[J]. Chin Tradit Herb Drugs(中草药), 2011, 42(1): 15-17.
- [5] WU S H, MA Y B, LUO X D, et al. The chemical constituents from *Toricellia angulata*[J]. Acta Bot Yunnanica(云南植物研 究), 2000, 22(2): 214-218.
- [6] JIANG Y J, YAO W F, ZHANG L, et al. Analysis on chemical components of *Ligustrum lucidum* by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry[J]. China J Chin Mater Med(中国中 药杂志), 2012, 37(15): 2304-2308.
- [7] SUN D D, XU X F, CUI J C, et al. Analysis on chemical components from water extract of Paeoniae Radix Alba by high performance liquid chromatography-electrospray ionization quadrupole-time of flight-mass spectrometry[J]. China J Chin Mater Med(中国中药杂志), 2013, 38(11): 1760-1765.
- [8] HAN Z Y, YU Y S, WEI X J, et al. HPLC fingerprints of the Miao medicine *Toricellia angulata* Oliv. var. *intermedia* (Harms) Hu[J]. Chin J Hosp Pharm(中国医院药学杂志), 2017, 37(2): 126-129.
- [9] HAN Z Y, YU Y S, DONG H P, et al. Rapid determination of total flavonoids and extract in the Miao medicine *Toricellia angulata* Oliv. var. intermedia (Harms) Hu by AOTF-near infrared spectroscopy[J]. Phys Test Chem Anal Part B Chem Anal(理化检验-化学分册), 2019, 55(6): 668-671.
- [10] HAN Z Y, SONG W, LI Y, et al. Analysis of ongoing change

characteristics of the contents of syringin and total flavonoids in different medicinal parts of *Toricellia angulata* from Guizhou[J]. China Pharm(中国药房), 2020, 31(17): 2124-2128.

- [11] ZHANG J, GE Y H, YANG H, et al. Simultaneous determination of sixteen free amino acids and six Amadori products in tobacco by LC-MS/MS[J]. Tob Sci Technol(烟草 科技), 2017, 50(11): 58-65.
- [12] LIU R, NIE L X, ZHANG Y Y, et al. Analysis of chemical constituents of Shengmai injection by RRLC-DAD-ESI-MSⁿ[J]. Chin J Pharm Anal(药物分析杂志), 2013, 33(1): 83-89.
- [13] LI J, LI J, JIA J P, et al. Comparison of flower buds and leaves of *Tussilago farfara* L. by UHPLC-Q extractive hybrid quadrupole orbitrap MS[J]. Acta Pharm Sin(药学学报), 2018, 53(3): 444-452.
- [14] JIANG X J. Chemical components analysis of Radix Peucedani by HPLC-MS and library searching technologies[D]. Shijiazhuang: Hebei Medical University, 2013.
- [15] LYU Z M, WANG Y, WANG D Q, et al. Functional prediction of Tanreqing Injection in brain diseases[J]. China J Chin Mater Med(中国中药杂志), 2020, 45(4): 937-945.
- [16] HUI T T, XIA Z T, ZHANG L L, et al. Identification and characterization of constituents in Yushu granules by HPLC-ESI-MS[J]. Chin J Pharm Anal(药物分析杂志), 2013, 33(4): 586-594.
- [17] BAI H Y, LIU B Z, HUO J H. Analysis on flavonoids composition of *Chrysanthemum* by LC-MS[J]. Chin J Tradit Med Sci Technol(中国中医药科技), 2018, 25(6): 826-830.
- [18] ZHANG Q Y, LIU Y Y, WAN C C, et al. Simultaneous quantification of eight constituents in the seed of *Forsythia* suspense (Thunb.) Vahl by HPLC-MS/MS method[J]. Chin Tradit Herb Drugs(中草药), 2017, 48(1): 192-196.
- [19] WANG M M, YU Y L, QU Y C, et al. Determination of fifteen bile acids concentration in rats'serum by LC-MS/MS[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2020, 37(9): 1030-1034.
- [20] LIU Y W, YANG Z, CHEN Y, et al. Identification study of trionycis-shell glue by UPLC-MS/MS marker peptide[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2019, 36(24): 3061-3063.
- [21] WANG Q, LIU J F, GU L G, et al. Determination of piceatannol 3'-O-glucoside in the plasma of Beagle dogs using LC-MS/MS and its pharmacokinetic research[J]. Chin J New Drugs(中国新药杂志), 2022, 31(1): 82-88.

收稿日期: 2021-06-23 (本文责编: 曹粤锋)