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ABSTRACT: OBJECTIVE  In response to Corona Virus Disease 2019(COVID-19), reusable drugs and new drugs against the 
low-data COVID-19 targets (with <300 known inhibitors) need to be discovered. METHODS  Employing MolMapNet, a deep 
learning architecture that outperformed the state-of-the-art deep learning models on pharmaceutical benchmark datasets, new 
deep learning models were developed for predicting pharmaceutical properties with broadly-learned knowledge-based molecular 
representations. Predicted activities against 6 low-data COVID-19 targets with 34, 51, 81, 155, 161, 241 known inhibitors 
respectively. Compared with machine learning and deep learning models(with 5 478−10 000 known inhibitors) trained with 
targets in higher datasets. RESULTS  Tested under the 10-fold cross-validation, our models predicted the activity values of the 
test-set inhibitors of these 6 targets with RMSE 0.442−0.917, MAE 0.358−0.749, and R² 0.436−0.761. CONCLUSION  The 
screening of approved drugs for potential drug repurposing agents against COVID-19 identified 3 drugs that are consistent with 
the literature-reported experimental findings. These indicate the potential of our deep learning method for the low-data targets 
against COVID-19 and other diseases. 
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针对低数据量 COVID-19 靶点的活性预测深度学习模型 
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摘要：目的  为应对新型冠状病毒肺炎(Corona Virus Disease 2019，COVID-19)，发现针对低数据量 COVID-19 靶点(已知

抑制剂<300 种)的可再利用药物和新药。方法  使用一种性能优于药物基准数据集上最先进的深度学习模型的深度学习架

构 MolMapNet，开发新的深度学习模型，用于预测基于知识的分子表示方式的药物特性。针对 6 个低数据量 COVID-19
靶点进行活性预测，这些靶点分别有 34，51，81，155，161，241 种已知抑制剂。并与使用更高数据集靶点训练的机器

学习和深度学习模型(具有 5 478~10 000 种已知抑制剂)进行比较。结果  在 10 倍交叉验证下进行模型测试，并使用测试

集预测了这 6 个靶点的抑制剂的活性值。RMSE 为 0.442~0.917，MAE 为 0.358~0.749，R²为 0.436~0.761。结论  在已批

准药物中筛选针对 COVID-19 的潜在药物，确定了 3 种与文献报道的实验结果一致的可再利用药物。这些表明了该深度

学习模型在针对 COVID-19 和其他疾病的低数据量靶点活性预测方面的潜力。 
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Apart from vaccine development, extensive 
efforts have been directed at drug repurposing and 
new drug discovery for the treatment of Corona 
Virus Disease 2019(COVID-19)[1-2]. New targets, 
particularly the host targets of high therapeutic 
potential have been discovered by such 
investigations as the virus-host interactions[3] and 
infection-induced host proteomic changes[4]. The 
exploration of the host targets for the treatment of 
COVID-19 is advantageous over the viral targets, 
because these host targets are more abundant for 
drug targeting and less prone to drug resistances[1], 
which has become the focus of drug repurposing[2] 

and new drug discovery efforts[5]. Moreover, 
computational methods, particularly machine 
learning(ML)[6-9] and deep learning(DL) methods, 
have been explored for finding drug repurposing 
candidates and predicting new inhibitors against the 
COVID-19 targets.  

Some of the ML and DL models against the 
COVID-19 targets have been developed for activity 
prediction with good performances(RMSE 0.29−1.002, 
R2 0.047−0.838, MAE 0.115−1.244)[6-7,10-11], which 
facilitate the search of highly potent inhibitors 
against COVID-19 targets. These models have been 
trained by ~5 478 to 10 000 inhibitors(Tab. 1).  
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Tab. 1  Training data size and activity prediction performance 
of the published machine learning(ML) and deep learning(DL) 
models 
表 1  已发布的机器学习和深度学习模型的训练数据大小

及活性预测表现 
Target name  Training data 

size  Models RMSE MAE R2 

Mall[10] 
papain-like 

proteinase; 
3C-like 

proteinase;  
Spike 

glycoprotein 

60 195 
drug-target 
interactions 

ML: 
Random
Forest

0.925 0.630 0.546 

ML: Support 
Vector 
Machines 

0.883 0.596 0.588 

ML: 
XGBoost 

0.868 0.567 0.599 

DL: CNN 0.909 0.587 0.575 
DL: LSTM 0.899 0.597 0.571 
CNN-LSTM 1.002 0.646 0.490 
GAT-CNN 0.872 0.576 0.597 

Beck[11] 
3C-like 

proteinase;  
RNA-dependent 

RNA 
polymerase;  

helicase; 
3’-to-5’ 

exonuclease; 
endoRNAse; 
2’-O-ribose 

methyltransfe
rase 

drug-target 
interaction 
datasets of 
97 092 853 
interactions 

DL: MT-DTI   0.81 

Batra[6] 
S-protein 8 120 

molecules 
against 
target 

ML:  
Random 
Forest 

0.29 0.21 0.81 

S-protein: 
ACE2 
interface 

5 478 
molecules 
against 
target 

0.84 0.57 0.70 

Kowalewski[7] 
ABCC1 Bio-assay 

data from 
ChEMBL 
25 

ML: 
Support 
Vector 
Machines 

 0.446−0.520 0.312−0.329
BRD2  0.341−0.405 0.435−0.529
BRD4  0.419−0.431 0.685−0.727
CSNK2A2  0.847−0.902 0.151−0.243
CSNK2B  0.414−0.449 0.670−0.750
DCTPP1  0.275−0.283 0.424−0.573
DNMT1  0.190−0.197 0.047−0.129
GFER  0.547−0.553 0.076−0.105
HDAC2  0.504−0.534 0.385−0.517
IMPDH2  0.423−0.463 0.352−0.493
ITGB1  0.565−0.638 0.616−0.699
MARK2  0.576−0.587 0.058−0.102
MARK3  0.450−0.473 0.134−0.177
NSD2  0.266−0.294 0.075−0.128
PABPC1  0.115−0.151 0.094−0.323
PLAT  0.522−0.613 0.283−0.460
PRKACA  0.502−0.517 0.483−0.522
PSEN2  0.582−0.603 0.502−0.542
PTGES2  0.421−0.490 0.644−0.716
RIPK1  1.099−1.244 0.252−0.352
SIGMAR1  0.504−0.555 0.572−0.639
TBK1  0.405−0.433 0.436−0.497
VCP  0.355−0.417 0.536−0.639
ACE2  0.530−0.858 0.748−0.838

However, many of the promising COVID-19 targets 
are of low-data targets with <300 known inhibitors 
in ChEMBL database[12-13] (some of which are in 
Tab. 2). Because DL typically requires larger training 
data, it is difficult to develop DL models for the 
low-data targets. As a result, low-data targets are 
inadequately explored by means of DL methods, 
particularly the low-data COVID-19 targets. To 
further explore DL capability for drug repurposing 
and new drug discovery against the low-data 
COVID-19 targets, it is desirable to explore new DL 
algorithms for activity prediction against these targets. 

Significant progress has recently been made in 
the exploration of the broadly-learned knowledge- 
based molecular representations MolMap[14] and the 
graph-based de-novo learning of molecular 
representations[1-4] for DL of pharmaceutical 
(bio-activity, toxicological and pharmacokinetic) 
properties, which outperformed the previous 
state-of-the-art(SOTA) DL models[1-4,14]. The 
enhanced learning capability of these methods may 
be extended for the low-data targets, which has not 
yet been explored. In this work, we employed our 
recently developed MolMap representations and the 
DL architecture MolMapNet[14] to develop 
single-task regression DL models for activity 
prediction against 6 low-data COVID-19 targets 
(Tab. 2). 
 
Tab. 2  Low-data COVID-19 targets and inhibitors selected 
in this study 
表 2  本研究选择的低数据量新型冠状病毒肺炎靶点及其

已知抑制剂数 

Target group Target (Gene name)  Number of 
known inhibitors

Kinase Casein kinase II alpha prime 
(CSNK2A2)[15] 

161 

Janus kinase 2 (JAK-2)][16] 34 

Cyclin G-associated kinase (GAK)[17] 241 

Immune cell 
receptor  

Toll-like receptor 2 (TLR2)[18] 81 

Toll-Toll-like receptor 9 (TLR9) 
(ClinicalTrials.gov Identifier: 

NCT04312997) 

51 

Protease  Dibasic-processing enzyme (Furin) 
(ClinicalTrials.gov Identifier: 
NCT04334460) 

155 

 
Based on the broad profiling of 1 456 molecular 

descriptors and 12 108 fingerprints against 8 206 960 
unique molecules, our MolMap feature-generation 
algorithm maps molecular structures into 
correlational-arranged 2D feature maps of molecular 
descriptors and fingerprint features, and the 
corresponding MolMapNet architecture enables 
robust out-of-the-box(OOTB) DL of diverse 
pharmaceutical properties, including activity 
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prediction of various pharmaceutical properties[14]. 
Such OOTB DL models are constructed with the 
same set of default parameters for all learning tasks, 
which aim at taking human out of the DL processes, 
allowing more people to use them for different DL 
tasks[19]. The capability of the MolMapNet 
architecture was further tested on the activity 
prediction tasks against the 6 low-data COVID-19 
targets(with 34−241 known inhibitors), and the 
corresponding performance was evaluated against 
the published performances of the DL and ML 
models for the higher-data COVID-19 targets with 
5 478 to 10 000 inhibitors. 
1  Methods 
1.1  Data collection and processing 

The COVID-19 targets were searched from the 
special COVID-19 sections of several databases[20],  
such as the therapeutic target database TTD[12] and 
DrugBank[21] with a specific focus on the targets in 
human host. The identified COVID-19 targets have 
been found to be the key target proteins or regulators 
of COVID-19 viral infection[12], which have been 
tested in COVID-19 clinical trials[22], or discovered 
by the COVID-19 omics investigations[15,23], or 
investigated for COVID-19 drug repurposing and 
new drug discovery[24]. For the identified targets, 
their known inhibitors were searched from the 
ChEMBL database[13]. We identified 6 low-data 
COVID-19 targets with 34, 51, 81, 155, 161, 241 
known inhibitors respectively. For exploring drug 
repurposing opportunities against these targets, the 
approved drugs were collected from TTD[12] and 
DrugBank[21]. The SMILES codes of the inhibitors of 
the identified targets together with their activity 
values against the respective target were downloaded 
from the ChEMBL database[13]. For unified 
representation, a standard pChEMBL, which allows 
multiple roughly comparable measures to be 
compared on a negative logarithmic scale, were used 
to represent the activity values of inhibitors. 
pChEMBL is defined as: −Log (molar IC50, XC50, 
EC50, AC50, Ki, Kd or Potency)[13]. 
1.2  MolMap molecular representations 

SMILES codes of the inhibitors were converted 
to canonical SMILES codes by RDKit[25-26]. The 
molecular descriptors and fingerprints of these 
inhibitors were computed from their canonical 
SMILES codes by using MolMap package[14]. We 
used MolMap to further convert these molecular 
descriptors and fingerprints into a MolMap 2D 
molecular feature map[14], which embeds the 
broadly-learned correlation relationships of the 
molecular descriptors and fingerprints in the 2D 
feature space by means of UMAP[27]. 

1.3  MolMapNet DL architecture 
MolMapNet has a dual-path CNN architecture, 

one path for molecular descriptors and another for 
fingerprint features to enable simultaneous learning 
(Fig. 1)[14]. In this work, we choose 13 classes of 
molecular descriptors and 3 sets of fingerprints 
(MACCSFP, PharmacoErGFP, and PubChemFP) for 
representing the inhibitors. Deeper feature extraction 
processes were conducted through the CNN layers. 
The first convolution layer consists of a larger 
number of kernels(48) for increased data dimension 
and a larger kernel size(13×13/1) for more 
expressive capability and more extensive 
perception[27]. The maximum parameter of our model 
is <0.83 million in the general tasks, but with 
relatively complex topology and depth. 

The left path is for learning molecular 
descriptors with multi-channel input layer of up to 
13 descriptor classes. The right path is for learning 
fingerprints with multi-channel input layer of up to 3 
fingerprint sets. Trainable parameters: left path: ~ 
0.40 million, right path: ~0.32 million, dual path: ~ 
0.80 million. 
1.4  MolMapNet hyperparameters and training 

The activation function ReLU was used for all 
tasks, with a small learning rate(0.000 1) and batch 
size(128). Other regularization options such as 
dropout and weight decay(L2 regularization) were 
not used, because MolMapNet models have 
relatively fewer parameters and are easily trained to 
convergence. In the regression tasks, the loss function 
was set to mean squared error. In model training, the 
early-stopping strategy was used in MolMapNet for 
alleviating over-fitting and computational cost[1-4, 28-30]. 
We performed 10-fold cross-validation for each 
model by splitting the full data set randomly into 
train set, test set in proportions(0.9∶0.1) for training 
and validation purposes respectively as mentioned in 
the comparative works. All models were developed 
by TensorFlow 2.0.0 on GeForce RTX 2080 Ti 
(12 GB memory in each card). 
1.5  Performance evaluation and metrics 

Three metrics were used for evaluating our 
developed models: RMSE, MAE and R2. For RMSE 
and MAE, each of these metrics are estimated using 
the predicted pChEMBL values vs the ground truth 
pChEMBL values for inhibitor-target interactions. R2 
is squared Pearson correlation coefficient between 
predicted and observed values. For metrics, MAE 
and RMSE, the lower the value and closer to 0, the 
better the predictive performance of the model, 
whereas for metrics, R2, the higher and closer the 
value to 1, the better the efficiency of the predictive 
model. 
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Fig. 1  MolMapNet deep learning architecture with three components(multichannel input feature mapping, dual-path CNN 
feature learning, nonlinear task learning with fully-connected layers) 
图 1  三组件 MolMapNet 深度学习架构(多通道输入特征映射、双路径 CNN 特征学习、具有全连接层的非线性任务学习) 
 

2  Results and Discussion 
MolMapNet regression models were trained and 

tested on each of the 6 low-data COVID-19 targets 
using three metrics(RMSE, MAE and R2)(Tab. 3), 
which were compared with the reported performance 
of the published ML and DL models of higher-data 
targets(with 5 478−10 000 known inhibitors) 
measured by the same metrics(RMSE, MAE and R2) 
(Tab. 1). The performance of MolMapNet was 
evaluated by 10-fold cross-validation as described in 
the Methods section. Significantly, our low-data 
models showed comparable or better performance 
with respect to those of the published ML and DL 
models of higher-data targets. The best RMSE of 
MolMapNet(0.442) outperformed that of 9 in 10 
published ML and DL models. While the best MAE 
of MolMapNet(0.358) was better than those of most 
published ML and DL models. The best R2 of 
MolMapNet(0.761) was better than those of 32 in 34 
published ML and DL models. Both the MolMapNet 
model and the published ML model have training on 
target casein kinase II alpha prime(Gene name: 
CSNK2A2), the MolMapNet outperformed the 
published ML model on both MAE and R2. In the 
case of much less training data, good expectations 
have been reached, and it might be exceeded if 
training data increased. These results showed that the 
MolMapNet method has certain competitiveness in 
predicting with small data sizes. 

Tab. 3  Activity prediction performances of MolMapNet for 
the low-data COVID-19 targets  
表 3  MolMapNet 对低数据新型冠状病毒肺炎靶点的活性

预测表现 

COVID-19 targets Number of known 
inhibitors RMSE MAE R2 

Kinase group 
Casein kinase II alpha prime 

(CSNK2A2)
161 0.575 0.466 0.595

Janus kinase 2 (JAK-2) 34 0.442 0.358 0.631

Cyclin G-associated kinase 
(GAK)

241 0.599 0.474 0.761

Immune cell receptor group 

Toll-like receptor 2 (TLR2) 81 0.917 0.749 0.436

Toll-like receptor 9 (TLR9) 51 0.530 0.437 0.468

Protease group 
Dibasic-processing enzyme 

(Furin) 155 0.578 0.440 0.484

 
We obtained 2 895 approved drugs from 

DrugBank[21] and TTD[12] , which were screened by 
our developed DL models of the COVID-19 targets 
for finding potential drug repurposing agents. We 
specifically screened against two targets with 
relatively higher number of known inhibitors (161 to 
241) and with a relatively good prediction 
performance(R2>0.59). The top 10 ranked drugs of 
each target, based on higher predicted pChEMBL 
values, are shown in Tab. 4. Among the identified 
potential drug repurposing candidates, two drugs 
Atorvastatin and Telavancin were predicted to be 
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Tab. 4  Screening results of top 10 ranked approved drugs against COVID-19 targets Casein kinase II alpha prime(CSNK2A2) 
and Cyclin G-associated kinase(GAK) 
表 4  针对新型冠状病毒肺炎靶点 CSNK2A2 和 GAK 的已批准药物筛选结果前 10 名 

Approved drug 
names DrugBank ID Original target Predict 

value
COVID-19 target : Casein kinase II alpha prime (CSNK2A2) 

Celecoxib DB00482 Cc1ccc(-c2cc(C(F)(F)F)nn2-c2ccc(S(N)(=O)=O)cc2)cc1 6.993 

Indapamide DB00808 CC1Cc2ccccc2N1NC(=O)c1ccc(Cl)c(S(N)(=O)=O)c1 6.991 

Metolazone DB00524 Cc1ccccc1N1C(=O)c2cc(S(N)(=O)=O)c(Cl)cc2NC1C 6.912 

Cyclothiazide DB00606 NS(=O)(=O)c1cc2c(cc1Cl)NC(C1CC3C=CC1C3)NS2(=O)=O 6.890 

Tenapanor DB11761 CN1Cc2c(Cl)cc(Cl)cc2[C@H](c2cccc(S(=O)(=O)NCCOCCOCCNC(=O)NCCCCNC(=O)NCCOCCO 
CCNS(=O)(=O)c3cccc([C@@H]4CN(C)Cc5c(Cl)cc(Cl)cc54)c3)c2)C1

6.867 

Chlorthalidone DB00310 NS(=O)(=O)c1cc(C2(O)NC(=O)c3ccccc32)ccc1Cl 6.783 

Benzthiazide DB00562 NS(=O)(=O)c1cc2c(cc1Cl)N=C(CSCc1ccccc1)NS2(=O)=O 6.771 

Zotepine DB09225 CN(C)CCOC1=Cc2ccccc2Sc2ccc(Cl)cc21 6.763 

Oritavancin DB04911 CN[C@H](CC(C)C)C(=O)N[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H]2C(=O)N[C@H]3C 
(=O)N[C@H](C(=O)N[C@H](C(=O)O)c4cc(O)cc(O)c4-c4cc3ccc4O)[C@H](O[C@H]3C[C@](C) 
(N)[C@@H](O)[C@H](C)O3)c3ccc(c(Cl)c3)Oc3cc2cc(c3O[C@@H]2O[C@H](CO)[C@@H](O) 
[C@H](O)[C@H]2O[C@H]2C[C@](C)(NCc3ccc(-c4ccc(Cl)cc4)cc3)[C@@H](O)[C@H](C)O2) 
Oc2ccc(cc2Cl)[C@H]1O

6.763 

Lumefantrine DB06708 CCCCN(CCCC)CC(O)c1cc(Cl)cc2c1-c1ccc(Cl)cc1/C2=C/c1ccc(Cl)cc1 6.760 

COVID-19 target : Cyclin G-associated kinase(GAK) 
Crizotinib DB08865 C[C@@H](Oc1cc(-c2cnn(C3CCNCC3)c2)cnc1N)c1c(Cl)ccc(F)c1Cl 7.829 

Isavuconazonium DB06636 CNCC(=O)OCc1cccnc1N(C)C(=O)OC(C)[n+]1cnn(C[C@](O)(c2cc(F)ccc2F)[C@@H](C)c2nc(-c3ccc 
(C#N)cc3)cs2)c1 

7.778 

Atorvastatin DB01076 CC(C)c1c(C(=O)Nc2ccccc2)c(-c2ccccc2)c(-c2ccc(F)cc2)n1CC[C@@H](O)C[C@@H](O)CC(=O)O 7.622 

Dabrafenib DB08912 CC(C)(C)c1nc(-c2cccc(NS(=O)(=O)c3c(F)cccc3F)c2F)c(-c2ccnc(N)n2)s1 7.600 

Ceritinib DB09063 Cc1cc(Nc2ncc(Cl)c(Nc3ccccc3S(=O)(=O)C(C)C)n2)c(OC(C)C)cc1C1CCNCC1 7.462 

Telavancin DB06402 CCCCCCCCCCNCCN[C@@]1(C)C[C@H](O[C@H]2[C@H](Oc3c4cc5cc3Oc3ccc(cc3Cl)[C@@H] 
(O)[C@@H](NC(=O)[C@@H](CC(C)C)NC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H]5C(=O)N 
[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)O)c5cc(O)c(CNCP(=O)(O)O)c(O)c5c5cc3ccc5O) 
[C@H](O)c3ccc(c(Cl)c3)O4)O[C@H](CO)[C@@H](O)[C@@H]2O)O[C@@H](C)[C@H]1O 

7.301 

Fosnetupitant DB14019 Cc1ccccc1-c1cc(N2CC[N+](C)(COP(=O)([O-])O)CC2)ncc1N(C)C(=O)C(C)(C)c1cc(C(F)(F)F)cc(C(F)
(F)F)c1 

7.281 

Avatrombopag DB11995 O=C(Nc1nc(-c2cc(Cl)cs2)c(N2CCN(C3CCCCC3)CC2)s1)c1cnc(N2CCC(C(=O)O)CC2)c(Cl)c1 7.222 

Lusutrombopag DB13125 CCCCCCO[C@@H](C)c1cccc(-c2csc(NC(=O)c3cc(Cl)c(/C=C(\\C)C(=O)O)c(Cl)c3)n2)c1OC 7.151 

Letermovir DB12070 COc1cccc(N2CCN(C3=Nc4c(F)cccc4[C@H](CC(=O)O)N3c3cc(C(F)(F)F)ccc3OC)CC2)c1 7.133 

Note: Predict value refers to predicted pChEMBL value. 
注：预测值是指预测的 pChEMBL 值。 
 
active against the COVID-19 target Cyclin G-associated 
kinase(GAK) (UniProt ID: O14976). An on-going 
randomized controlled Atorvastatin adjuvant trial is 
underway to study the effects of Atorvastatin on 
COVID-19 disease progression within 30 d 
(ClinicalTrials.gov Identifier: NCT04380402). A 
recent study has shown that Atorvastatin can reduce 
the expression of IL10, to achieve anti-inflammatory 
effects[31]. GAK has been found to interact with IL12 
receptor[32]. IL12 and IL10 signaling is 
interdependent in response to certain infections[33]. 
Therefore, the clinical effect of Atorvastatin against 
COVID-19 may be attributable to its interference of 
GAK-IL12-IL10 signaling pathways. A recent study 
has shown that Teicoplanin is able to block MERS 
and SARS envelope pseudoviruses, it inhibits the 
activities of the host cell’s cathepsin L and cathepsin 
B specifically, thereby, blocks the receptor-binding 

domains exposure of the core genome and 
subsequent release into the cytoplasm of the host 
cell[34]. Telavancin, as a derivative of Teicoplanin, is 
a novel inhibitor of histopsin L-dependent virus[35]. 
Our prediction of the targeting of Atorvastatin and 
Telavancin against GAK is consistent with these 
experimental findings. 

A Cox2 inhibitor drug Celecoxib was predicted 
to be active against the COVID-19 target casein 
kinase(CK2) (UniProt ID: P19784)[12]. A randomized 
trial of hospitalized COVID-19 patients has shown 
that Celecoxib prevented clinical deterioration, and 
is associated with rapid pulmonary CT-chest 
improvement[36]. Another clinical trial has 
demonstrated that treatment with an anti-CK2 
synthetic peptide improves clinical response in 
COVID-19 patients with pneumonia[37]. An 
investigation has found that CK2 is a regulator of 
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TBK1 and IRF3, and blockade of CK2 activity by a 
small molecule inhibitor leads to TBK1 activation, 
whereby eliciting effective host defense mechanisms 
against such viral infection as hepatitis C 
infection[38]. Another study has revealed that 
COVID-19 proteins NSP6 and NSP13 bind and 
block TBK1 phosphorylation, which suppress IRF3 
phosphorylation and nuclear translocation for the 
evasion of COVID-19 against human host’s type-1 
interferon responses[39]. Hence, the clinical effect of 
Celecoxib may be due to its regulation of the 
CK2-TBK1-IRF3-interferon signaling in addition to 
its Cox2 inhibitory anti-inflammatory effects[40]. Our 
predicted targeting of Celecoxib against CK2 is 
consistent with these reports. For the remaining 17 
identified drugs, we have not found literature reports 
for judging the validity of the predicted COVID-19 
targets of these drugs. Nonetheless, the consistency 
of the prediction results of 3 drugs with the 
literature-reported experimental findings indicates 
the usefulness of our DL models for searching 
potential COVID-19 drug repurposing agents. 
3  Conclusion 

Accurate learning and prediction of activates 
against a target is a challenging task[41], particularly 
for low-data targets[42] and novel prediction tasks[43]. 
Appropriate molecular representations are critical for 
enhanced DL capabilities[1, 44-48]. Our developed DL 
model MolMapNet is based on a CNN architecture 
with broadly-learned knowledge-based molecular 
representations, which has shown good prediction 
performances for various activity, toxicity and 
pharmacokinetic properties[14]. This work further 
demonstrated the capability of MolMapNet for 
activity prediction against the low-data targets. In 
particular, the prediction performances for the 5 
low-data COVID-19 targets are comparable or even 
better than the published ML and DL models of 
higher-data targets. In the screening of approved 
drugs for potential drug repurposing agents against 2 
low-data COVID-19 targets, the prediction results 
of 3 identified drugs are consistent with the 
literature- reported experimental findings. Taken 
together, our studies suggested the usefulness of 
DL methods with broadly-learned knowledge- 
based molecular representations for activity 
prediction against low-data targets, particularly for 
drug discovery and drug repurposing against the 
low-data COVID-19 targets. 
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