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Binding Activity Prediction of the Low-data G-protein Coupled Receptors Targets by Deep Learning of 
Knowledge-based Molecular Representations 
 
LI Yin, TAN Ying*(Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China) 

 
ABSTRACT: OBJECTIVE  To construct new deep learning(DL) models for binding activity prediction against each of 23 
low-data G-protein coupled receptors(GPCRs)(known binders <250) using MolMapNet, assisting in the novel drug discovery of 
GPCRs. METHODS  Binding activity datasets of low-data GPCRs were collected from multiple databases and preprocessed, 
and DL models were constructed by MolMapNet; the established models were compared with published DL models and ML 
models; Neuropeptide S receptor proprietary compounds to evaluate the constructed model. RESULTS  Under 10-fold 
cross-validation tests, MolMapNet DL models predicted the binding activity values of the test-set compounds for each GPCR 
with RMSE 0.373 6−1.199 8(20 among which RMSE<1), MAE 0.299 4−1.008 3(21 among which MAE<1), and R2 
0.136 9−0.810 7(15 among which R2 >0.5, 9 among which R2 >0.6). Our low-sample models showed comparable performances 
to those of the published DL models trained with higher-data GPCRs(>250 known binders). Our models also performed well in 
activity prediction of patented GPCR binders. CONCLUSION  The 23 models constructed here can predict the biological 
activity of a compound against a specific target with good performance, have the potential to screen drugs with 
novel structures, and MolMapNet architecture is useful for activity prediction against the low-sample GPCR targets. 
KEYWORDS: binding activity; deep learning; G-protein coupled receptors; low-data 

 

基于分子理化性质特征的小样本G蛋白偶联受体靶点结合活性预测的

深度学习模型 
    

李因，谭英*(清华大学深圳国际研究生院，广东 深圳 518055) 
 

摘要：目的  使用 MolMapNet 构建深度学习(deep learning，DL)模型，预测化合物对 23 个小样本(已知活性数据<250)G
蛋白偶联受体(G-protein coupled receptors，GPCRs)的结合活性，辅助发现 GPCRs 的新型药物。方法  从多个数据库搜集

小样本 GPCRs 的活性数据集并进行预处理，使用 MolMapNet 构建 DL 模型；将建立的模型与已公布 DL 模型和 ML 模型

进行比较；用神经肽 S 受体专利化合物对构建的模型进行评估。结果  构建了 23 个小样本 GPCRs 靶点的单回归模型，

在 10 折交叉验证测试下，构建的模型在测试集上的均方根误差为 0.373 6∼1.199 8(其中 20 个<1)，平均绝对误差为

0.299 4∼1.008 3(其中 21 个<1)，R2 为 0.136 9∼0.810 7(其中 15 个>0.5，9 个>0.6)；与已发表的大样本 GPCRs(已知活性数

据>250) DL 模型和小样本靶点的 ML 模型相比，显示出相当的性能；使用构建的模型对专利中化合物进行活性预测，模

型表现良好。结论  构建的 23 个回归模型能够预测化合物对特定靶点的生物活性，具有筛选结构新颖的药物的潜力，

MolMapNet 可用于小样本 GPCRs 的活性预测。 
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G-protein coupled receptors(GPCRs) constitute 
one of the largest drug target families. They are 
targeted by 475(~34%) FDA approved drugs and 321 
clinical trial agents[1]. Despite successful exploration 
of GPCRs, 20% of the 66 novel GPCRs in clinical 
trials are without an approved drug, and there are 
additional 224(56%) non-olfactory GPCRs with 
broad untapped therapeutic potential and yet to enter 

clinical investigations[1]. Therefore, methods that 
facilitate the efficient discovery of binders of novel 
GPCRs are highly desired. Computational methods 
such as molecular docking and machine learning(ML) 
have been explored for facilitating the discovery of 
binders of novel GPCRs[2-7]. The rapid advance of 
the exploration of deep learning(DL) methods for 
drug discovery has raised great interest in applying 
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DL for discovering binders of novel GPCRs[8-15]. 
Many novel GPCRs are low-data targets with < 

250 known binders in ChEMBL database(Tab. 
1)[16-17]. DL models have been typically trained by 
larger  data .  The recent ly-developed graph 
convolutional neural network(GCN) models for 
higher-data GPCRs(>250 known binders) binder 
p r e d i c t i o n  h a v e  b e e n  d e v e l p e d  b y  u s i n g 
2 135−11 632 binders[18]. In other study, ML models 
of low-sample non GPCRs targets have been 
developed by using 61−170 binders[3-6]. Efficient DL 
methods for low-data targets are needed for extended 
coverage of low-data GPCRs and other targets. 
Moreover, GPCR targeted drugs are mostly high 
potent binders. There is a need for the prediction of 
binding activity level against GPCRs in order to find 
potent binders. Although DL regression models have 
been developed for the prediction of binding activity 
values of various targets[10-15], to the best of our 
knowledge, rarely ML or DL regression model has 

 
Tab. 1  Low-sample GPCRs and known binders evaluated in 
this study 
表 1  本文研究的小样本 GPCRs 及其已知配体数量 

GPCR group GPCRs No of Known 
Binders

Short peptide receptor Neuropeptide S receptor 104 
Apelin receptor 149 
Prolactin-releasing peptide 

receptor 
164 

Neuropeptide FF receptor 1 172 
Neuromedin B receptor 243 

Lipid-like ligand 
receptor 

Oxoeicosanoid receptor 1 81 
Uracil nucleotide/cysteinyl 

leukotriene receptor 
90 

Lysophosphatidic acid receptor 5 105 
C-X-C chemokine receptor 

type 5 
108 

Chemokine receptor C-C chemokine receptor type 10 50 
C-X-C chemokine receptor 

type 5 
108 

C-C chemokine receptor type 8 211 
Carboxylic acid 

receptor 
Succinate receptor 1 48 
HM74 nicotinic acid GPCR 143 

Nucleotide-like 
receptor 

Purinergic receptor P2Y11 65 

G-protein coupled 
receptor B family 

Vasoactive intestinal 
polypeptide receptor 1 

52 

Corticotropin releasing factor 
receptor 2

58 

Glucagon-like peptide 2 
receptor 

111 

Vasoactive intestinal 
polypeptide receptor 2 

116 

Pituitary adenylate 
cyclase-activating 
polypeptide  type I receptor 

144 

Gastric inhibitory polypeptide 
receptor 

203 

G-protein coupled 
receptor C family 

GABA-B receptor 1 60 
Metabotropic glutamate 

receptor 7
133 

been developed for low-data GPCRs of <250 known 
binders. The enhanced capability of the emerging DL 
algorithms may be explored for prediction of the 
binding activity levels against the low-data GPCRs. 

Advanced DL algorithms have recently 
emerged for the prediction of pharmaceutical 
properties based on broadly-learned knowledge- 
based molecular representations MolMap and the 
graph-based de-novo learning of molecular 
representations[10-14]. The DL models with these 
algorithms outperformed the previous state-of-the-art 
(SOTA) DL models in the prediction of activity 
values, pharmacokinetic  and toxicological 
properties[10-14]. These algorithms may be applied for 
the improved prediction of binding activity against 
low-data GPCRs. In this work, we employed our 
recently developed MolMap representations and the 
DL architecture MolMapNet for developing 
single-task regression DL models for binding activity 
prediction against 23 low-data GPCRs(Tab. 1)[14].  

MolMap algorithm converts unordered 
molecular descriptors and fingerprints of compounds 
into correlationally-arranged 2D feature maps, based 
on which highly-efficient convolutional neural 
networks MolMapNet architecture can be 
constructed for robust out-of-the-box(OOTB) DL of 
diverse pharmaceutical properties, including activity 
prediction of various pharmaceutical properties[14]. 
The robustness of MolMap and MolMapNet models 
is supported by broad profiling of 1 456 molecular 
descriptors and 12 108 fingerprints against 8 206 960 
unique molecules. The OOTB DL models are with 
fixed set of default parameters for all learning tasks, 
which takes human out of the DL processes and thus 
allows more people to develop DL models[19]. The 
prediction performance of our developed 
MolMapNet models was evaluated with respect to 
published DL models of higher-sample GPCRs and 
ML models of low-data protein targets. The first set 
of models are GCN models of DL for the prediction 
of binders of 33 GPCRs[18]. The second set of 
models are ML models for the prediction of binders 
of diverse low-sample targets[3-6]. While the 23 
low-sample GPCRs of our models are different from 
the 33 higher-data GPCRs of the GCN models and 
other low-data targets of ML models, the range of 
the performance metric RMSE, MAE and R2 values 
of these models can nonetheless be tentatively 
compared, which provide some indication about 
whether our low-data GPCR models can reach the 
comparable level of performance of the 
higher-sample GPCR models and low-data protein 
targets ML models[15]. 
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1  Methods 
1.1  Data collection, processing and molecular 
representation 

The GPCR family of proteins were obtained 
from the Uniprot database[20]. Based on their 
respective Uniprot ID, the binders of each GPCR 
were obtained from the ChEMBL database[17], 
PubChem database and BindingDB database using 
web crawler, with the IC50, EC50 or Ki value of each 
binder recorded. We identified 23 low-data GPCRs 
with 48−243 known binders. For unified 
representation of binding potencies, a standard 
pChEMBL value, defined as −Log(molar IC50, EC50, 
Ki)[17], was used for measuring the binding activity 
value of each binder against its respective GPCR 
target. For each binder, its SMILES code was 
converted to canonical SMILES code by RDKit[21]. 
Using the SMILES code, the molecular descriptors 
and fingerprints of each binder were computed by 
means of MolMap package[14]. We used MolMap to 
further convert these molecular descriptors and 
fingerprints into a MolMap 2D feature map[14], which 
embeds the broadly-learned correlation relationships 
of the molecular descriptors and fingerprints in the 
2D feature space based UMAP manifold 
learning[22-23]. 
1.2  MolMapNet DL architecture 

MolMapNet adopts a dual-path CNN 
architecture, one path is for learning molecular 
descriptors, and the second path is for simultaneous 
learning of fingerprint features(Fig. 1)[14]. Following 
our previous work[14], we choosed 13 classes of 
molecular descriptors and 3 sets of fingerprints 
(MACCSFP, PharmacoErGFP, and PubChemFP) for 
representing the GPCR binders. The first convolution 
layer of MolMapNet contained a larger number of 
kernels(48) for increased data dimension and a larger 
kernel size(13×13/1) for more expressive capability 
and more extensive perception[24]. Deeper feature 
extraction processes were conducted through the CNN 
layers of MolMapNet. The maximum number of 
parameter of a MolMapNet model was <0.83 million 
for general tasks, while the robustness of these models 
was facilitated by the relatively complex topology and 
depth. 
1.3  MolMapNet hyperparameters, training and 
performance metrics 

For all learning tasks, the activation function 
ReLU was used in MolMapNet along with a small 
learning rate(0.000 1) and batch size(128). Other 
regularization options such as dropout and weight 
decay(L2 regularization) were not used in 
MolMapNet models because these models were with 

relatively fewer parameters and was easily trained to 
convergence. In the regression tasks, mean squared 
error was used as the loss function. In model training, 
the early-stopping strategy was used in MolMapNet 
for avoiding over-fitting problem and for reduced 
computational cost[10,12-13,25-26]. We performed 
10-fold cross-validation(10-FCV) for each model by 
splitting the full dataset randomly into train set, test 
set in proportions(0.9 ∶ 0.1) for training and 
validation purposes respectively. All models were 
developed by TensorFlow 2.0.0 on DGX-1(32 GB 
memory in each card). In this work, three popular 
performance metrics for regression tasks were used 
for evaluating our developed MolMapNet models, 
namely, RMSE, MAE and R2. For RMSE and MAE, 
each of these metrics were estimated using the 
predicted pChEMBL values vs the ground truth 
pChEMBL values for agonist/inhibitor-target 
interactions. R2 is squared Pearson correlation 
coefficient between predicted and observed values. 
2  Results and Discussions 
2.1  Low-sample GPCRs 

Most of the 23 low-sample GPCRs in Tab. 1 
are being actively explored for drug discovery 
against a variety of diseases. For instance, efforts 
have been directed at the discovery of novel 
agonists against apelin receptor for the treatment of 
several diseases, due to the involvement of this 
GPCR in cardiovascular diseases, liver fibrosis, 
obesity, diabetes and neuroprotection[27]. 
Antagonists of Neuropeptide S receptor(NPSR) 
have been developed for the treatment of various 
CNS disorders, because modulation of this GPCR 
and the neuropeptide S system are closely 
associated with CNS disorders such as panic 
disorder, anxiety, sleeping disorder, asthma, obesity, 
and substance abuse[28]. Agonists of Oxoeicosanoid 
receptor 1 have been designed as antiinflammatory 
and anticancer agents, because this GPCR is 
involved in inflammatory processes and 
oncogenesis[29]. Antagonists of Lysophosphatidic 
acid receptor 5 have been discovered as potential 
analgesic agents, because this GPCR is highly 
expressed in spinal cord and dorsal root ganglion 
associated with pain[30]. Novel antagonists of 
Succinate receptor 1 have been developed for the 
treatment of such illnesses as rheumatoid arthritis, 
liver fibrosis and obesity, because this GPCR 
senses the citric cycle intermediate succinate and is 
implicated in these illnesses[31]. Possibly because of 
the low-data nature of these 23 GPCRs[17], rarely 
DL and ML model has been published for these 
GPCRs. 
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Fig. 1  MolMapNet deep learning architecture[14] 
From top to bottom: Multichannel input feature mapping, dual-path CNN feature learning, nonlinear task learning with fully-connected layers. 
图 1  深度学习网络 MolMapNet 框架[14] 
从上到下依次为：多通道输入特征映射层、双路径 CNN 特征学习层、全连通非线性任务学习层。 
 
2.2  Binding activity prediction performance of 
MolMapNet models of the low-sample GPCRs 

The single-task MolMapNet regression models 
were trained and tested on each of the 23 low-data 
GPCRs using three metrics RMSE, MAE and R2. For 
each of the 23 low-data GPCRs, the performance of 
our MolMapNet model was evaluated by 10-FCV as 
described in the Methods section. The average 

RMSE, MAE and R2 value of the 10-FCV results for 
each GPCR is recorded in Tab. 2. The MAE values 
of these 23 low-sample GPCR models were 
tentatively compared with the MAE values of the 
GCN models of 33 higher-sample GPCRs[18], and the 
RMSE values of these 23 low-data GPCR models 
were compared with the RMSE values of the ML 
models of low-data targets[3-6]. In developing GCN 
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models, 33 models have been built only on features 
that are automatically extracted from compound 
structures by using ensemble learning for higher-data 
GPCR, and the performance of each model has been 
evaluated by MAE values on test set[18]. The 33 
higher-sample models and 23 low-sample models 
were mixed and then ranked according to their MAE 
values regardless of the sample sizes. The models 
with lower MAE values were ranked higher. The 
top-10 models with lower MAE values are in Tab. 3. 
Significantly, 3 of the top-5 and 6 of the top-10 
models are MolMapNet models, suggesting that the 
low-sample MolMapNet models are close in 
performance to the higher-sample models. The R2 
values of the 23 low-sample models were compared 
with those of the 33 higher-sample GCR models. 
Overall, 15 of the 23 low-sample models are with R2 
values higher than the lowest R2 value(0.51) of the 
h igher-sample  models ,  indica t ing  tha t  the   

 
Tab. 2  Binding activity prediction performances of models 
built by using MolMapNet for the binders of 23 low-sample 
GPCRs 
表 2  使用 MolMapNet 在 23 个小样本 GPCRs 配体集上构

建的活性预测模型的表现 

UniProt ID No of Known 
Binders RMSE MAE R2 

Q9BXA5 48 0.480 4 0.428 7 0.508 6 

P46092 50 0.842 8 0.728 7 0.500 3 

P32241 52 1.199 8 1.008 3 0.454 7 

Q13324 58 0.486 5 0.405 0 0.810 7 

Q9UBS5 60 0.966 0 0.808 1 0.530 6 

Q96G91 65 0.631 7 0.533 8 0.361 6 

Q8TDS5 81 0.929 9 0.756 8 0.416 2 

Q13304 90 0.770 3 0.650 5 0.639 8 

Q6W5P4 104 0.833 1 0.686 8 0.278 3 

Q9H1C0 105 0.723 6 0.590 2 0.367 3 

P32302 108 0.703 4 0.547 7 0.594 9 

O95838 111 0.637 4 0.512 8 0.388 9 

P41587 116 0.974 5 0.773 5 0.671 3 

Q14831 133 0.373 6 0.299 4 0.756 3 

P49019 143 0.649 3 0.524 0 0.534 5 

P41586 144 0.981 3 0.804 8 0.138 1 

P35414 149 0.760 3 0.600 6 0.719 9 

P49683 164 0.664 6 0.526 7 0.136 9 

Q9GZQ6 172 0.581 0 0.453 2 0.651 4 

P48546 203 0.465 1 0.364 0 0.774 7 

Q9UBY5 204 0.767 7 0.603 1 0.584 1 

P51685 211 0.850 5 0.679 4 0.637 0 

P28336 243 0.625 2 0.439 5 0.721 9 

Note: Average RMSE, MAE and R2 of 10-fold cross-validation results 
were shown. 
注：表中 RMSE、MAE 和 R2 是 10 折交叉验证结果的均值。 

Tab. 3  Comparison of the proposed model with the 
published DL regression model on MAE 
表 3  本文模型和已公布的 DL 回归模型在 MAE 上的比较 

GPCR No of Known 
Binders MAE 

Metabotropic glutamate receptor 7 133 0.299 4

Orexin receptor 1 2 852 0.36 

Gastric inhibitory polypeptide receptor 203 0.364 

Corticotropin releasing factor receptor 2 58 0.405 

Serotonin 7 (5-HT7) receptor 2 395 0.42 

Succinate receptor 1 48 0.428 7

Neuromedin B receptor 243 0.439 5

Orexin receptor 2 3 079 0.45 

Neuropeptide FF receptor 1 172 0.453 2

Cannabinoid CB1 receptor 6 966 0.46 
 

low-sample MolMapNet models are close to the 
higher-sample models. 

Apart from GPCRs, there have been 
literature-reported ML regression models of 11 
low-sample non-GPCR targets(92–170 binders) with 
computed RMSE and R2 values[3-6]. These ML 
regression models explore random forest(RF), support 
vector regression(SVR), decision trees(DT). These 11 
low-sample ML models and the 23 low-sample 
MolMapNet models were mixed then ranked 
according to their RMSE values regardless the sample 
sizes(Tab. 4). The models with lower RMSE values 
were ranked higher. Overall, 5 of the top-5 and 8 of 
the top-10 models are the MolMapNet models. 
Comparison of the R2 values of the ML models and 
those of the MolMapNet models showed that 9 of the 
23 MolMapNet models are with R2 values higher than 
the lowest R2 values of the 11 ML models. The 
MolMapNet model with the best R2 value(0.810 7) is 
better than the R2 values of 72% of the ML models.   

 
Tab. 4  Comparison of the proposed model with published 
ML models on RMSE 
表 4  本文模型和已公布的 ML 模型在 RMSE 上的比较 

Targets No of Known 
Binders RMSE 

Metabotropic glutamate receptor 7 133 0.373 6 

Gastric inhibitory polypeptide receptor 203 0.465 1 

Succinate receptor 1 48 0.480 4 

Corticotropin releasing factor receptor 2 58 0.486 5 

Neuropeptide FF receptor 1 172 0.581 0 

Trypsin  110 0.610 0 

Human serum albumin 95 0.620 0 

Neuromedin B receptor 243 0.625 2 

Purinergic receptor P2Y11 65 0.631 7 

Glucagon-like peptide 2 receptor 111 0.637 4 
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The performance of MolMapNet measured by 
MAE and R2 values also indicates fairly good 
capability in predicting these metrics for low-data 
GPCRs. Overall, 6(26%) and 20(87%) of the 23 
GPCRs are with average RMSE value <0.6 and <1 
respectively, 6(26%) and 21(92%) of the 23 GPCRs 
are with average MAE value <0.5 and <1 
respectively, and 9(39%) and 65(87%) of the 23 
GPCRs are with average R2 value >0.6 and >0.5 
respectively. These results indicated that the 
MolMapNet is a useful tool for low-data learning 
tasks, and it may be employed for the development 
of DL models for the prediction of potential binders 
of low-data GPCRs. 
2.3  Influence of data size on the performance of 
MolMapNet models 

The average R2 values of our MolMapNet 
models showed some sensitivity to the size of 
training data. The 23 low-data GPCRs(Tab. 1) can be 
divided into three groups. The first is the extremely 
low data group of 40−70 known binders, which 
inlcudes 6 GPCRs. The second is the intermediately 
low data group of 71−150 known binders, which 
contains 11 GPCRs. The third is the fairly low data 
groups of 151−250 known binders, which consists of 
6 GPCRs. In general, a QSAR model for bioactivity 
prediction is acceptable. when it has an R2 value > 
0.6[32]. Using R2 value > 0.6 as a tentative criterion 
for acceptable low-data regression models, there are 
acceptable MolMapNet models for 1(17%), 4(36%) 
and 4(67%) of the GPCRs in the extremely, 
intermediately and fairly low data group respectively 
(Fig. 2). Therefore, data size has a significantly 
negative impact on the performance of MolMapNet 
models in the extremely low data groups, while it 
has lower impact on the performance of MolMapNet 
models of the intermediately and fairly low data 
groups. MolMapNet models were able to score 

acceptable. R2 values for more than 36% of the 
GPCRs in the intermediately and fairly low data 
groups, indicating its usefulness in low-data learning 
tasks for GPCRs with >70 known binders. 
2.4  Performance of MolMapNet models on novel 
compounds 

To further test our developed MolMapNet 
models on novel compounds, we searched the 
PubMed database for the patented compounds against 
the 23 low-data GPCRs not in the ChEMBL, 
PubChem and BindingDB database. Our search 
resulted in the molecular structures of 7 patented 
agents of NPSR[33]. The experimental activity values 
(pIC50) of NPSR of these patented agents were 
obtained from the literature[33]. These patented agents 
were used for testing the MolMapNet models of 
NPSR. The structures and activity values of our 
searched patented agents are provided in Fig. 3 and 
Tab. 5. The average RMSE, MAE and R2 values of the 
10-FCV MolMapNet models of NPSR on the 7 
ligands are 1.504 8, 1.370 3 and 0.674 9 respectively. 
The MAE between actual binding value and predicted 
value of compound 7 is only 0.17, while the max 
extended connectivity fingerprints similarity between 
compound 7 and 104 known binders of NPSR is 
0.38(Fig. 4). These results suggested that MolMapNet 
models for low-data GPCRs have some capability in 
predicting the binding activity of some novel 
compounds, and have the potential to screen drugs 
with novel structures, thus they can be used to screen 
potential drugs corresponding to the GPCR target in 
the early stage of drug development. 
3  Conclusion 

It is a challenging task to accurately learn and 
predict the binding activities against a target, 
particularly for low-data targets and novel molecular 
structures[34-36]. A key factor for enhanced learning 
and prediction capability is the appropriate 
representations of the compounds[10,37-41]. Our 

 

 
 

Fig. 2  Relationship between model performance and data volume 
图 2  模型表现与数据量的关系图 
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Tab. 5  Selected patented neuropeptide S receptor binders, experimental activities, MolMapNet predicted activities, and the 
structural similarity to the closest compound of the training dataset of known 
表 5  专利中神经肽 S 受体配体的实验活性，MolMapNet 预测活性，以及与已知训练数据集最接近的配体的结构相似性 

ID SMILES of Patented Compound Experimental pIC50 Predicted value Structural Similarity to the 
known binders in trying dataset

3b Cc1ccccc1CN1CCN(C2(c3ccccc3)C(=O)c3ccccc3C2=O)CC1 8.52 6.793 6  >0.74 

3c COc1ccccc1CN1CCN(C2(c3ccccc3)C(=O)c3ccccc3C2=O)CC1 8.22 6.870 0  >0.74 

3t O=C1c2ccccc2CC1(c1ccccc1)N1CCN(Cc2ccccc2)CC1 7.77 6.774 5  0.74 

3u Cc1ccccc1CN1CCN(C2(c3ccccc3)Cc3ccccc3C2=O)CC1 8.7 6.616 1  0.60 
 

 
 

Fig. 3  Molecular structures of the selected patented 
neuropeptide S receptor binders 
图 3  专利中神经肽 S 受体化合物分子结构图 
 

 
 

Fig. 4  Molecular structure and corresponding similarity 
value of the NPSR ligand with the highest similarity of ECFP 
to patent compound 7 
图 4  与 7 号专利化合物 ECFP 相似性最高的 NPSR 配体

的分子结构及对应相似值 
 

MolMapNet models is based on broad learning of 
knowledge-based molecular representations, which 
enable the restructuring of unordered molecular 
descriptors and fingerprints into ordered 2D feature 
maps for subsequent DL with CNN architecture[14]. 
MolMapNet and other advanced DL methods has 
shown good prediction performances for various 
activity, toxicity and pharmacokinetic properties[14]. 
Our study in this work further demonstrated the 
capability of MolMapNet for binding activity 
prediction against the low-data GPCRs. DL 
algorithms that explore wider variety of feature 
representations, e.g. the graph-based DNN 
fingerprints[42], have continuously progressed. The 
collective exploration of these and other established 

strategies enable more enhanced DL and prediction 
of molecular binding activities and other 
pharmaceutical properties. 
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