Binding Activity Prediction of the Low-data G-protein Coupled Receptors Targets by Deep Learning of
Knowledge-based Molecular Representations
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ABSTRACT: OBJECTIVE To construct new deep learning(DL) models for binding activity prediction against each of 23
low-data G-protein coupled receptors(GPCRs)(known binders <250) using MolMapNet, assisting in the novel drug discovery of
GPCRs. METHODS Binding activity datasets of low-data GPCRs were collected from multiple databases and preprocessed,
and DL models were constructed by MolMapNet; the established models were compared with published DL models and ML
models; Neuropeptide S receptor proprietary compounds to evaluate the constructed model. RESULTS Under 10-fold
cross-validation tests, MolMapNet DL models predicted the binding activity values of the test-set compounds for each GPCR
with RMSE 0.373 6-1.199 8(20 among which RMSE<1), MAE 0.299 4-1.008 3(21 among which MAE<1), and R?
0.136 9-0.810 7(15 among which R? >0.5, 9 among which R? >0.6). Our low-sample models showed comparable performances
to those of the published DL models trained with higher-data GPCRs(>250 known binders). Our models also performed well in
activity prediction of patented GPCR binders. CONCLUSION The 23 models constructed here can predict the biological
activity of a compound against a specific target with good performance, have the potential to screen drugs with
novel structures, and MolMapNet architecture is useful for activity prediction against the low-sample GPCR targets.
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G-protein coupled receptors(GPCRs) constitute
one of the largest drug target families. They are
targeted by 475(~34%) FDA approved drugs and 321
clinical trial agents'!. Despite successful exploration
of GPCRs, 20% of the 66 novel GPCRs in clinical
trials are without an approved drug, and there are
additional 224(56%) non-olfactory GPCRs with
broad untapped therapeutic potential and yet to enter
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clinical investigations!'l. Therefore, methods that
facilitate the efficient discovery of binders of novel
GPCRs are highly desired. Computational methods
such as molecular docking and machine learning(ML)
have been explored for facilitating the discovery of
binders of novel GPCRs!>”). The rapid advance of
the exploration of deep learning(DL) methods for
drug discovery has raised great interest in applying
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DL for discovering binders of novel GPCRs!*!],
Many novel GPCRs are low-data targets with <
250 known binders in ChEMBL database(Tab.
D617 DL models have been typically trained by
larger data. The recently-developed graph
convolutional neural network(GCN) models for
higher-data GPCRs(>250 known binders) binder
prediction have been develped by using
2 135-11 632 binders!'®!. In other study, ML models
of low-sample non GPCRs targets have been
developed by using 61—170 binders®®!. Efficient DL
methods for low-data targets are needed for extended
coverage of low-data GPCRs and other targets.
Moreover, GPCR targeted drugs are mostly high
potent binders. There is a need for the prediction of
binding activity level against GPCRs in order to find
potent binders. Although DL regression models have
been developed for the prediction of binding activity
values of various targets!!®!3)) to the best of our
knowledge, rarely ML or DL regression model has

Tab.1 Low-sample GPCRs and known binders evaluated in
this study

Fz1 AR RE /DR GPCRs K H B AR 4t 2

No of Known

GPCR group GPCRs Binders
Short peptide receptor  Neuropeptide S receptor 104
Apelin receptor 149
Prolactin-releasing peptide 164
receptor
Neuropeptide FF receptor 1 172
Neuromedin B receptor 243
Lipid-like ligand Oxoeicosanoid receptor 1 81
receptor Uracil nucleotide/cysteinyl 90
leukotriene receptor
Lysophosphatidic acid receptor 5 105
C-X-C chemokine receptor 108
type 5
Chemokine receptor C-C chemokine receptor type 10 50
C-X-C chemokine receptor 108
type 5
C-C chemokine receptor type 8 211
Carboxylic acid Succinate receptor 1 48
receptor HM?74 nicotinic acid GPCR 143
Nucleotide-like Purinergic receptor P2Y'11 65
receptor
G-protein coupled Vasoactive intestinal 52
receptor B family polypeptide receptor 1
Corticotropin releasing factor 58
receptor 2
Glucagon-like peptide 2 111
receptor
Vasoactive intestinal 116
polypeptide receptor 2
Pituitary adenylate 144
cyclase-activating
polypeptide type I receptor
Gastric inhibitory polypeptide 203
receptor
G-protein coupled GABA-B receptor 1 60
receptor C family Metabotropic glutamate 133
receptor 7
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been developed for low-data GPCRs of <250 known
binders. The enhanced capability of the emerging DL
algorithms may be explored for prediction of the
binding activity levels against the low-data GPCRs.

Advanced DL algorithms have recently
emerged for the prediction of pharmaceutical
properties based on broadly-learned knowledge-
based molecular representations MolMap and the
graph-based de-novo learning of molecular
representations!'®!4, The DL models with these
algorithms outperformed the previous state-of-the-art
(SOTA) DL models in the prediction of activity
values, pharmacokinetic and toxicological
properties!!®14l. These algorithms may be applied for
the improved prediction of binding activity against
low-data GPCRs. In this work, we employed our
recently developed MolMap representations and the
DL architecture MolMapNet for developing
single-task regression DL models for binding activity
prediction against 23 low-data GPCRs(Tab. 1)1,

MolMap  algorithm  converts  unordered
molecular descriptors and fingerprints of compounds
into correlationally-arranged 2D feature maps, based
on which highly-efficient convolutional neural
networks  MolMapNet architecture can  be
constructed for robust out-of-the-box(OOTB) DL of
diverse pharmaceutical properties, including activity
prediction of various pharmaceutical properties!'*!.
The robustness of MolMap and MolMapNet models
is supported by broad profiling of 1 456 molecular
descriptors and 12 108 fingerprints against 8 206 960
unique molecules. The OOTB DL models are with
fixed set of default parameters for all learning tasks,
which takes human out of the DL processes and thus
allows more people to develop DL models!'®!. The
prediction  performance of our developed
MolMapNet models was evaluated with respect to
published DL models of higher-sample GPCRs and
ML models of low-data protein targets. The first set
of models are GCN models of DL for the prediction
of binders of 33 GPCRs!!®), The second set of
models are ML models for the prediction of binders
of diverse low-sample targetsi>®. While the 23
low-sample GPCRs of our models are different from
the 33 higher-data GPCRs of the GCN models and
other low-data targets of ML models, the range of
the performance metric RMSE, MAE and R? values
of these models can nonetheless be tentatively
compared, which provide some indication about
whether our low-data GPCR models can reach the
comparable level of performance of the
higher-sample GPCR models and low-data protein
targets ML models!'®).
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1 Methods
1.1  Data collection, processing and molecular
representation

The GPCR family of proteins were obtained
from the Uniprot database®®. Based on their
respective Uniprot ID, the binders of each GPCR
were obtained from the ChEMBL databasel!”],
PubChem database and BindingDB database using
web crawler, with the ICso, ECs¢ or K; value of each
binder recorded. We identified 23 low-data GPCRs
with  48-243 known binders. For unified
representation of binding potencies, a standard
pChEMBL value, defined as —Log(molar ICsg, ECsy,
K)!'71 was used for measuring the binding activity
value of each binder against its respective GPCR
target. For each binder, its SMILES code was
converted to canonical SMILES code by RDKit!*!,
Using the SMILES code, the molecular descriptors
and fingerprints of each binder were computed by
means of MolMap package!'. We used MolMap to
further convert these molecular descriptors and
fingerprints into a MolMap 2D feature map!'*!, which
embeds the broadly-learned correlation relationships
of the molecular descriptors and fingerprints in the

2D  feature space based UMAP manifold
learning?>23!,
1.2 MolMapNet DL architecture

MolMapNet adopts a  dual-path CNN

architecture, one path is for learning molecular
descriptors, and the second path is for simultaneous
learning of fingerprint features(Fig. 1)!'4. Following
our previous work!", we choosed 13 classes of
molecular descriptors and 3 sets of fingerprints
(MACCSFP, PharmacoErGFP, and PubChemFP) for
representing the GPCR binders. The first convolution
layer of MolMapNet contained a larger number of
kernels(48) for increased data dimension and a larger
kernel size(13x13/1) for more expressive capability
and more extensive perception?¥. Deeper feature
extraction processes were conducted through the CNN
layers of MolMapNet. The maximum number of
parameter of a MolMapNet model was <0.83 million
for general tasks, while the robustness of these models
was facilitated by the relatively complex topology and
depth.
1.3 MolMapNet hyperparameters, training and
performance metrics

For all learning tasks, the activation function
ReLU was used in MolMapNet along with a small
learning rate(0.000 1) and batch size(128). Other
regularization options such as dropout and weight
decay(L2 regularization) were not wused in
MolMapNet models because these models were with
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relatively fewer parameters and was easily trained to
convergence. In the regression tasks, mean squared
error was used as the loss function. In model training,
the early-stopping strategy was used in MolMapNet
for avoiding over-fitting problem and for reduced
computational ~ cost!!%1213:23-261 = Wwe  performed
10-fold cross-validation(10-FCV) for each model by

splitting the full dataset randomly into train set, test

set in proportions(0.9 0.1) for training and

validation purposes respectively. All models were
developed by TensorFlow 2.0.0 on DGX-1(32 GB
memory in each card). In this work, three popular
performance metrics for regression tasks were used
for evaluating our developed MolMapNet models,
namely, RMSE, MAE and R%. For RMSE and MAE,
each of these metrics were estimated using the
predicted pChEMBL values vs the ground truth
pChEMBL values for agonist/inhibitor-target
interactions. R> is squared Pearson correlation
coefficient between predicted and observed values.
2 Results and Discussions
2.1 Low-sample GPCRs

Most of the 23 low-sample GPCRs in Tab. 1
are being actively explored for drug discovery
against a variety of diseases. For instance, efforts
have been directed at the discovery of novel
agonists against apelin receptor for the treatment of
several diseases, due to the involvement of this
GPCR in cardiovascular diseases, liver fibrosis,
obesity,  diabetes and  neuroprotection?’],
Antagonists of Neuropeptide S receptor(NPSR)
have been developed for the treatment of various
CNS disorders, because modulation of this GPCR
and the neuropeptide S system are closely
associated with CNS disorders such as panic
disorder, anxiety, sleeping disorder, asthma, obesity,
and substance abuse!?®). Agonists of Oxoeicosanoid
receptor 1 have been designed as antiinflammatory
and anticancer agents, because this GPCR is
involved in  inflammatory  processes and
oncogenesis>’). Antagonists of Lysophosphatidic
acid receptor 5 have been discovered as potential
analgesic agents, because this GPCR is highly
expressed in spinal cord and dorsal root ganglion
associated with pain®%. Novel antagonists of
Succinate receptor 1 have been developed for the
treatment of such illnesses as rheumatoid arthritis,
liver fibrosis and obesity, because this GPCR
senses the citric cycle intermediate succinate and is
implicated in these illnesses®!). Possibly because of
the low-data nature of these 23 GPCRs!'7, rarely
DL and ML model has been published for these
GPCRs.
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Fig. 1 MolMapNet deep learning architecturel'¥]

From top to bottom: Multichannel input feature mapping, dual-path CNN feature learning, nonlinear task learning with fully-connected layers.
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2.2 Binding activity prediction performance of
MolMapNet models of the low-sample GPCRs

The single-task MolMapNet regression models
were trained and tested on each of the 23 low-data
GPCRs using three metrics RMSE, MAE and R*. For
each of the 23 low-data GPCRs, the performance of
our MolMapNet model was evaluated by 10-FCV as
described in the Methods section. The average

P E AR 2h 5 2022 4F 11 A5 39 B4 21 )

RMSE, MAE and R? value of the 10-FCV results for
each GPCR is recorded in Tab. 2. The MAE values
of these 23 low-sample GPCR models were
tentatively compared with the MAE values of the
GCN models of 33 higher-sample GPCRs!'®], and the
RMSE values of these 23 low-data GPCR models
were compared with the RMSE values of the ML
models of low-data targets’®®. In developing GCN
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models, 33 models have been built only on features
that are automatically extracted from compound
structures by using ensemble learning for higher-data
GPCR, and the performance of each model has been
evaluated by MAE values on test set!!8]. The 33
higher-sample models and 23 low-sample models
were mixed and then ranked according to their MAE
values regardless of the sample sizes. The models
with lower MAE values were ranked higher. The
top-10 models with lower MAE values are in Tab. 3.
Significantly, 3 of the top-5 and 6 of the top-10
models are MolMapNet models, suggesting that the
low-sample MolMapNet models are close in
performance to the higher-sample models. The R?
values of the 23 low-sample models were compared
with those of the 33 higher-sample GCR models.
Overall, 15 of the 23 low-sample models are with R?
values higher than the lowest R? value(0.51) of the
higher-sample models, indicating that the

Tab. 2 Binding activity prediction performances of models
built by using MolMapNet for the binders of 23 low-sample
GPCRs

#=2 {1 MolMapNet 7 23 /N A GPCRs TRtk & E 44
WAV VTR A A e 2 3

No of Known

UniProt ID Binders RMSE MAE R?
QI9BXA5 48 0.480 4 0.428 7 0.508 6
P46092 50 0.842 8 0.728 7 0.500 3
P32241 52 1.199 8 1.008 3 0.454 7
Q13324 58 0.486 5 0.405 0 0.8107
QIUBSS 60 0.966 0 0.808 1 0.530 6
Q96G91 65 0.6317 0.5338 0.361 6
Q8TDS5 81 0.9299 0.756 8 0.416 2
Q13304 90 0.770 3 0.650 5 0.639 8
Q6W5P4 104 0.833 1 0.686 8 0.278 3
Q9H1CO 105 0.723 6 0.590 2 0.367 3
P32302 108 0.703 4 0.5477 0.594 9
095838 111 0.637 4 05128 0.3889
P41587 116 0.974 5 0.773 5 0.6713
Q14831 133 0373 6 0.299 4 0.756 3
P49019 143 0.649 3 0.524 0 0.5345
P41586 144 0.9813 0.804 8 0.138 1
P35414 149 0.760 3 0.600 6 0.7199
P49683 164 0.664 6 0.526 7 0.136 9
Q9GZQ6 172 0.5810 0.4532 0.651 4
P48546 203 0.465 1 0.364 0 0.7747
Q9UBY5 204 0.7677 0.603 1 0.584 1
P51685 211 0.850 5 0.679 4 0.6370
P28336 243 0.625 2 0.4395 0.7219

Note: Average RMSE, MAE and R? of 10-fold cross-validation results
were shown.

. Fh RMSE, MAE Fil R2 & 10 #7128 U IESE SR 1 3918

Tab. 3  Comparison of the proposed model with the
published DL regression model on MAE

®3 AXHEEFf 2 A8 DL EA# A E MAE L 3

No of Known

GPCR Binders MAE
Metabotropic glutamate receptor 7 133 0.299 4
Orexin receptor 1 2 852 0.36
Gastric inhibitory polypeptide receptor 203 0.364
Corticotropin releasing factor receptor 2 58 0.405
Serotonin 7 (5-HT7) receptor 2395 0.42
Succinate receptor 1 48 0.428 7
Neuromedin B receptor 243 0.439 5
Orexin receptor 2 3079 0.45
Neuropeptide FF receptor 1 172 0.4532
Cannabinoid CBI1 receptor 6 966 0.46

low-sample MolMapNet models are close to the
higher-sample models.

Apart from GPCRs, there have been
literature-reported ML regression models of 11
low-sample non-GPCR targets(92—170 binders) with
computed RMSE and R? values®®. These ML
regression models explore random forest(RF), support
vector regression(SVR), decision trees(DT). These 11
low-sample ML models and the 23 low-sample
MolMapNet models were mixed then ranked
according to their RMSE values regardless the sample
sizes(Tab. 4). The models with lower RMSE values
were ranked higher. Overall, 5 of the top-5 and 8 of
the top-10 models are the MolMapNet models.
Comparison of the R? values of the ML models and
those of the MolMapNet models showed that 9 of the
23 MolMapNet models are with R? values higher than
the lowest R?> values of the 11 ML models. The
MolMapNet model with the best R? value(0.810 7) is
better than the R* values of 72% of the ML models.

Tab. 4 Comparison of the proposed model with published
ML models on RMSE

T4 AXHEAEFEAHH ML A £ RMSE _E# &

No of Known

Targets Binders RMSE
Metabotropic glutamate receptor 7 133 0.373 6
Gastric inhibitory polypeptide receptor 203 0.465 1
Succinate receptor 1 48 0.480 4
Corticotropin releasing factor receptor 2 58 0.486 5
Neuropeptide FF receptor 1 172 0.5810
Trypsin 110 0.6100
Human serum albumin 95 0.620 0
Neuromedin B receptor 243 0.6252
Purinergic receptor P2Y11 65 0.6317
Glucagon-like peptide 2 receptor 111 0.637 4
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The performance of MolMapNet measured by
MAE and R? values also indicates fairly good
capability in predicting these metrics for low-data
GPCRs. Overall, 6(26%) and 20(87%) of the 23
GPCRs are with average RMSE value <0.6 and <1
respectively, 6(26%) and 21(92%) of the 23 GPCRs
are with average MAE value <0.5 and <1
respectively, and 9(39%) and 65(87%) of the 23
GPCRs are with average R’ value >0.6 and >0.5
respectively. These results indicated that the
MolMapNet is a useful tool for low-data learning
tasks, and it may be employed for the development
of DL models for the prediction of potential binders
of low-data GPCRs.

2.3 Influence of data size on the performance of
MolMapNet models

The average R® values of our MolMapNet
models showed some sensitivity to the size of
training data. The 23 low-data GPCRs(Tab. 1) can be
divided into three groups. The first is the extremely
low data group of 40-70 known binders, which
inlcudes 6 GPCRs. The second is the intermediately
low data group of 71-150 known binders, which
contains 11 GPCRs. The third is the fairly low data
groups of 151-250 known binders, which consists of
6 GPCRs. In general, a QSAR model for bioactivity
prediction is acceptable. when it has an R* value >
0.6821. Using R?* value > 0.6 as a tentative criterion
for acceptable low-data regression models, there are
acceptable MolMapNet models for 1(17%), 4(36%)
and 4(67%) of the GPCRs in the extremely,
intermediately and fairly low data group respectively
(Fig. 2). Therefore, data size has a significantly
negative impact on the performance of MolMapNet
models in the extremely low data groups, while it
has lower impact on the performance of MolMapNet
models of the intermediately and fairly low data
groups. MolMapNet models were able to score
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00D 0.5306
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acceptable. R*> values for more than 36% of the
GPCRs in the intermediately and fairly low data
groups, indicating its usefulness in low-data learning
tasks for GPCRs with >70 known binders.
2.4 Performance of MolMapNet models on novel
compounds

To further test our developed MolMapNet
models on novel compounds, we searched the
PubMed database for the patented compounds against
the 23 low-data GPCRs not in the ChEMBL,
PubChem and BindingDB database. Our search
resulted in the molecular structures of 7 patented
agents of NPSR*. The experimental activity values
(pICsp) of NPSR of these patented agents were
obtained from the literature®*. These patented agents
were used for testing the MolMapNet models of
NPSR. The structures and activity values of our
searched patented agents are provided in Fig. 3 and
Tab. 5. The average RMSE, MAE and R? values of the
10-FCV MolMapNet models of NPSR on the 7
ligands are 1.504 8, 1.370 3 and 0.674 9 respectively.
The MAE between actual binding value and predicted
value of compound 7 is only 0.17, while the max
extended connectivity fingerprints similarity between
compound 7 and 104 known binders of NPSR is
0.38(Fig. 4). These results suggested that MolMapNet
models for low-data GPCRs have some capability in
predicting the binding activity of some novel
compounds, and have the potential to screen drugs
with novel structures, thus they can be used to screen
potential drugs corresponding to the GPCR target in
the early stage of drug development.
3 Conclusion

It is a challenging task to accurately learn and
predict the binding activities against a target,
particularly for low-data targets and novel molecular
structures®**3¢ A key factor for enhanced learning
and prediction capability is the appropriate
representations of the compounds!!®37-4!1 Our

07747
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Fig.2 Relationship between model performance and data volume
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Tab. 5 Selected patented neuropeptide S receptor binders, experimental activities, MolMapNet predicted activities, and the
structural similarity to the closest compound of the training dataset of known

RS LAFHERS ZARMAKNERE M, MolMapNet TIIVE M, LLE & B 401 25 248 & & 5 41 09 T 4Rk iy 25 4 40 AL 1E

1D SMILES of Patented Compound

Experimental pICs,

Structural Similarity to the

Predicted value known binders in trying dataset

3b  CclcecceICNICCN(C2(c3cecee3)C(=0)c3cecce3C2=0)CCl
3¢ COclcececcICNICCN(C2(c3ceccece3)C(=0)c3cceec3C2=0)CC1
3t O=Clc2ccecc2CCl(cleccee])NTICCN(Ce2cececc2)CCl

3u  Ccleeeec1CNTCCN(C2(c3ccece3)Ce3ceecc3C2=0)CCl1

8.52 6.793 6 >0.74
8.22 6.870 0 >0.74
7.77 6.774 5 0.74
8.7 6.6161 0.60

Fig. 3

Molecular structures of the selected patented
neuropeptide S receptor binders

3 LRFMHERS ZERUEH L THEME

N @
N
oto ofo oo
71 sn(lj)= 0.38 72 sn(lli))= 0.38 73 sr(:i)= 0.36

Fig. 4 Molecular structure and corresponding similarity
value of the NPSR ligand with the highest similarity of ECFP
to patent compound 7
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MolMapNet models is based on broad learning of
knowledge-based molecular representations, which
enable the restructuring of unordered molecular
descriptors and fingerprints into ordered 2D feature
maps for subsequent DL with CNN architecture!!*].
MolMapNet and other advanced DL methods has
shown good prediction performances for various
activity, toxicity and pharmacokinetic properties!!4).
Our study in this work further demonstrated the
capability of MolMapNet for binding activity
prediction against the low-data GPCRs. DL
algorithms that explore wider variety of feature
representations, e.g. the graph-based DNN
fingerprints*?, have continuously progressed. The
collective exploration of these and other established
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strategies enable more enhanced DL and prediction
of molecular binding activities and other
pharmaceutical properties.
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