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ABSTRACT: To facilitate drug discovery, deep learning models have been developed for the prediction of inhibitors of various 
targets including kinases, achieving high prediction performances. Nonetheless the ability of deep learning on low-sample targets 
(<100 known active molecules) has not been adequately tested. Leveraging the good activity prediction capability of a recently 
emerged deep convolutional neural network MolMapNet method under knowledge-based molecular representations, this study 
developed multi-task MolMapNet models for inhibitory activity prediction of 19 low-sample kinases and 43 higher-sample 
kinases of 6 kinase subfamilies. The developed multi-task MolMapNet models for all low-sample and higher-sample kinases 
significantly enhanced the activity prediction performance over the single-task models. The activity prediction indicators such as 
R2 values were in the good performance ranges of 0.651 3−0.749 8 for most kinases. These suggest the usefulness of the 
multi-task transfer learning strategy in activity prediction of low-sample targets. 
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摘要：为了推动药物研发，深度学习模型被开发用于预测包括激酶在内的各种靶点的抑制剂，且能够达到较好的预测性

能。尽管如此，深度学习在小样本靶点(<100 个已知的活性化合物)上的预测性能还没有得到充分的测试。本研究利用最

近出现的深度卷积神经网络 MolMapNet 方法在基于先验知识的分子表示下具有的良好的活性预测能力，开发出了多任务

MolMapNet 模型，用于预测 6 个激酶亚家族的 19 个小样本激酶和 43 个大样本激酶的抑制剂活性。开发的用于所有小样

本和大样本激酶的多任务 MolMapNet 模型明显比单任务模型具有更好的活性预测性能。R2 值等活性预测指标在 0.651 3~ 
0.749 8 内表现较好。这证明了多任务迁移学习在小样本靶标活性预测中的鲁棒性。 
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Improvement of the efficiency of new drug 
development remains a key issue and challenge to the 
pharmaceutical communities. Machine learning and 
deep learning(DL) methods have been extensively 
explored in biomedicine and drug discovery, 
achieving promising performances with artificial 
intelligence assisted drugs(e.g. ISM00055[1]) entering 
clinical trials. Pharmaceutical DL can be based on 
different various representations of molecular 
properties, which include molecular graph-based 
feature representations[2-5], molecular string-based 
representations[6-8], image-based representations[9-10], 
and knowledge-based molecular representations[11-12]. 

These DL methods achieved promising performances 
in the prediction of various pharmaceutical properties 
such as activities, pharmacokinetic properties and 
toxicological properties. Nonetheless, the ability of 
these DL methods on low-sample targets(with <100 
known active molecules) has not been adequately 
tested. Low-sample targets are important in drug 
discovery because they are mostly in the earlier-stages 
of discovery processes, typically in need for finding 
more active molecules as potential drug candidates. 
Therefore, the development and testing of DL 
methods for low-sample targets are useful for 
facilitating earlier-stage drug discovery. 
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In this work, we probed this question by testing 
the ability of a newly developed MolMapNet deep 
convolutional neural network method under the 
knowledge-based molecular representations[12] in the 
prediction of inhibitors of low-sample kinase targets. 
MolMapNet was selected because of its good 
performances on multiple benchmark datasets, 
including multi-task datasets[12]. We specifically 
developed multi-task MoMapNet models for 6 
kinase subfamilies, each containing both low-sample 
kinases(<100 known inhibitors) and higher-sample 
kinases(>250 known inhibitors). The performance of 
these models on the low-sample kinases as well as 
higher-sample kinases were evaluated. MolMapNet 
explores broadly leaned knowledge-based molecular 
representations for DL of pharmaceutical properties. 
The molecular features were derived from the MolMap 
algorithms trained from 8 million compounds from the 
PubChem database using a hierarchical method[12]. 
This enables efficient learning of pharmaceutically 
relevant molecular features by a CNN architecture. 
In this work, MolMapNet regression prediction 
models were developed for predicting the activity of 
kinase inhibitors[13]. 

Kinases constitute a large family of therapeutic 
targets, and many kinases are the targets of approved 
and clinical trial drugs[14]. Nonetheless, at least 30% 
of kinases are still underdeveloped[15]. For instance, 
LATS2 of the NDR subfamily is a key target for 
malignant peritoneal mesothelioma[16], but there are 
only 27 known inhibitors in the ChEMBL database, 
and there is no approved drug for this target. It is 
very difficult to develop DL models for such 
low-sample target, and special strategies are 
needed[17]. The core principle of low-sample DL is to 
achieve the effect of higher-sample DL based on the 
existing data, albeit being far less than the typical 
data-sizes of conventional DL[18]. One useful 
strategy is the transfer learning[19]. In particular, the 
multi-task strategy allows the collective learning of 
low-sample and higher-sample targets of the same 
subfamily under the same DL architecture, wherein 
the features learned from higher-sample targets can 
be transferred for the learning of low-sample targets. 
Therefore, we aimed to establish a multi-task 
regression DL model for the activity prediction of 
low-sample kinase targets based on the MolMapNet 
multi-task architecture[12]. 
1  Material and methods 
1.1  Data collection and processing 

Human kinase targets were searched from the 
ChEMBL database, and the inhibitor activity data of 
the identified targets were downloaded through the 
ChEMBL_websource_client on the ChEMBL 

database[15]. In order to eliminate the dimensional 
gap and the variation degree of kinase inhibitor 
activity data, the standard pChEMBL is used to 
represent the activity value of inhibitors, allowing 
comparison of multiple roughly comparable 
measurements on a negative log scale, which is 
defined as: −Log(molar IC50, EC50, Ki)+9. The 
activity values based on these three indicators are 
combined by a Python code. For the inhibitors with 
multiple activity values against the same, kinase, the 
median activity value was tentatively chosen as the 
activity values. We selected three H-type kinase 
subfamilies dominated by higher-sample(>200 
known inhibitors) kinases and three L-type kinase 
subfamilies dominated by low-sample(<100 known 
inhibitors) kinases(Tab. 1). The list of kinases and 
the number of inhibitors of these subfamilies are 
provided in Supplementary Tab. 1. The inhibitors of 
all kinases of each subfamily forms a dataset for 
developing multi-task DL models. These datasets 
were normalised based on established normalization 
algorithm[20]. 

 

Tab. 1  List of the H-type kinase subfamilies dominated by 
higher-sample(>200 inhibitors) kinases and L-type kinase 
subfamilies dominated by low-sample kinases(<100 
inhibitors) 
表 1  H-型激酶亚家族(靶点抑制剂数目>200)和 L-型激酶

亚家族(靶点抑制剂数目<100)信息汇总 

Type Subfamily HSKs≥200 LSKs≤100 HSK vs 
LSK ratio

H-type 
subfamily

Tyrosine protein kinase 
EGFR subfamily 

4 1 4 

AGC protein kinase 
AKT subfamily 

3 1 3 

Atypical protein kinase 
PIKK subfamily 

4 2 2 

L-type 
subfamily

TKL protein kinase 
RAF subfamily 

2 3 0.67

CMGC protein kinase 
CDK subfamily 

12 27 0.44

Note: Each subfamily was used for developing multi-task deep learning 
models to predict the inhibitors of each kinase in the subfamily. HSKs 
indicates number of higher-sample kinases, and LSKs indicates number 
of low-sample kinases. 
注：每个亚家族被用于构建多任务深度学习模型，以预测亚家族中每

个激酶的抑制剂活性。HSKs 表示高样本激酶的数量，LSKs 表示低样

本激酶的数量。 
 

1.2  MolMap molecular representations 
The SMILES codes of kinase inhibitors were 

converted to standard SMILES codes by RDKit. The 
MolMap software package can be used to convert 
the standard SMILES code of inhibitors into 
advanced two-dimensional features such as 
molecular descriptors and fingerprints, and further 
build a two-dimensional molecular feature map, 
embedding the feature relationship into the 
two-dimensional space by means of UMAP. In order 
to ensure the efficiency of model training, it is 
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essential to remove the repetitive inhibitor SMILES 
sequence and the ligand activity files with no activity 
value before transformation[21]. 
1.3  MolMapNet architecture and hyperparameters 

MolMapNet architecture is in Fig. 1. Each 
model has comparatively few parameters, which uses 
an early stop strategy to reduce overfitting and 
computational costs. We performed stratiKFOLD 
10-fold cross validation for each model. After the 
activity value data of small molecule inhibitors 
against kinase targets were divided into 0, 1, 2, 3, 4, 
5, 6 and 7 categories according to (0, 10], (10, 100], 
(100, 1 000], (1 000, 10 000], (10 000, 100 000], 
(100 000, 1 000 000], (1 000 000, 10 000 000], 
(10 000 000, infinity), data was stratified by means 
of stratiKFOLD. The training of the model is carried 
out by inputting the divided training set, and then the 
test set tests the training effect of the model, makes a 
prediction, and then obtains the evaluation result. 
The verification set is mainly used to evaluate the 
results and determine how to adjust the super 
parameters of the model[22-23]. 
1.4  Model evaluation 

Three metrics were used for evaluating our 
developed models: R2, MAE, RMSE. R2 reflects the 
linear correlation between the predicted value and 
the real value of the model, ranging from −1 to 1. 
The greater the absolute value of R2, the stronger the 
linear correlation between the predicted value and 
the real value. RMSE represents the degree of 
deviation between the predicted value and the real 
value. MAE is the average value of the difference 
between the predicted value and the real value after 
taking the absolute value. For R2, the higher and 
closer the value to 1, the better the efficiency of the 
predictive model, whereas for MAE and RMSE, the 
lower the value and closer to 0, the better the 
predictive performance of the model[24]. 
1.5  Model optimization 

We utilize dual-input channel to input data 
converted into descriptors and fingerprints into 
MolMapNet model for operation. When the number 
of kinase target inhibitors is <50, the number of 
compounds in part of the fold may be <2, so that the 
Nan value needs to be returned to avoid the 
abnormal interruption of the program caused by the 
inability of R2 to calculate. If the test set data is <1, 
the Nan value needs to be returned to avoid program 
exceptions caused by RMSE calculation 
interruption[25]. In the regression task, the loss 
function is generally set as mean squared error. After 
many updating iterations, it has proved that the 
fitting efficiency of the primary loss function is not 
high. We introduced MASK and Pos_weight[i] 

parameter to improve the fitting efficiency of the 
model. The loss function is multiplied by MASK. 
The core function of MASK is to eliminate the 
influence of the vacancy value in the data files on the 
loss function, replacing the active null value in 
targets and distinguishing it from the non null value 
samples[26]. In the regression, the value of MASK 
should be greater than the maximum active value, 
otherwise the convergence anomaly of the model 
loss function will occur. Pos_weight[i] is defined as 
total row number of the data column divided by the 
effective row number. Pos_weight[i] is able to 
weight the data and reduce the error caused by the 
target with small data volume when optimizing the 
parameters of the loss function during model training 
and prediction[27]. 
2  Results 
2.1  Inhibitory activity prediction performance of 
multi-task MolMapNet on the H-type kinase 
subfamilies dominated by higher-sample kinases 

We first evaluated the performance of multi-task 
MolMapNet models on three H-type kinase 
subfamilies dominated by higher-sample kinases. The 
three subfamilies are ERBB, AKT, PIKK with 4 and 1, 
3 and 1, 4 and 2 higher-sample and low-sample 
kinases respectively(Tab. 1). ERBB subfamily of 
kinases are important for non small cell lung cancer 
and breast cancer treatment with multiple approved 
drugs[15]. AKT and PIKK kinases have been explored 
for anticancer therapeutics[28-29]. With sufficient 
number of inhibitors for vast majority of kinases, 
these three subfamilies represent the relatively-easier 
DL tasks. The multi-task MolMapNet models 
achieved good overall performances for the 
low-sample and higher-sample kinases in the ERBB, 
AKT and PIKK subfamilies(Tab. 2). For the 
low-sample kinases in these three subfamilies, the R2 
value are 0.749 8, 0.668 3, and 0.559 4 respectively, 
the RMSE values are 0.791 9, 0.410 9 and 0.991 6, 
and the MAE values are 0.673 2, 0.351 0 and 0.738 9. 
For the higher-sample kinases in these three 
subfamilies, the R2 value are in the range of 
0.337 9−0.749 8, 0.668 3−0.841 1, 0.180 8−0.274 3 
respectively, the RMSE values are in the range of 
0.527 9−0.861 1, 0.410 9−0.692 8, 0.695 0−1.065 6 
respectively, and the MAE values are in the range of 
0.361 8−0.692 1, 0.347 4−0.526 2, 0.568 7−0.907 5 
respectively. In the evaluation of regression models 
such as QSAR models, the threshold of R2 values is 
0.6[30]. Therefore, the multi-task MolMapNet models 
are of good performances in four CDK kinase 
inhibitors have been approved for the inhibitory 
activities of low-sample and higher-sample kinases in 
the H-type kinase subfamilies. 
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Fig. 1  Workflow of MolMapNet architecture[11] 
Left input: descriptor map; right input: fingerprint map. Trainable parameters: left single path  is 0.40 million; right single path is 0.32 million; both path 
is 0.80 million. 
图 1  MolMapNet 架构图示 
左输入：描述符；右输入：分子指纹。可训练参数：左单路径为 40 万；右单路径为 32 万；双路径为 80 万。 
 

2.2  Inhibitory activity prediction performance of 
multi-task MolMapNet on the L-type kinase 
subfamilies dominated by low-sample kinases 

We then evaluated the performance of 
multi-task MolMapNet models on three L-type 
kinase subfamilies dominated by low-sample kinases. 
The three subfamilies are RAF, CDK, and MAPK 
with 2 and 2, 12 and 8, and 10 and 6 higher-sample 

and low-sample kinases respectively(Tab. 1). The 
BRAF V600E/K mutant of RAF subfamilies is the 
target of approved drugs for the treatment of 
melanoma, and intensified efforts have been directed 
at the development of RAF inhibitors as potential 
anticancer therapeutics[15,31]. So far, four CDK kinase 
inhibitors have been approved for anticancer 
therapeutics and on-going efforts are being directed 
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Tab. 2  Inhibitory activity prediction performance of 
multi-task MolMapNet on each of the four H-type kinase 
subfamilies EGFR, AKT, PIKK and RAF 
表 2  多任务 MolMapNet 对 4 个 H 型激酶亚家族 EGFR、
AKT、PIKK 和 RAF 的抑制剂活性预测结果 

Type Kinase NOI R2 RMSE MAE
EGFR 

subfamily 
EGFR, ERB3, ERBB4 254 0.703 7 0.702 3 0.550 5
ERBB4 901 0.736 9 0.527 7 0.357 2
ERBB2 3 127 0.676 6 0.635 3 0.459 4
EGFR 9 425 0.681 2 0.821 7 0.621 1

AKT 
subfamily 

AKT3 1 082 0.782 1 0.532 5 0.350 8
AKT2 1 699 0.836 0 0.523 7 0.379 6
AKT1 4 074 0.780 4 0.677 4 0.513 6

RAF 
subfamily 

RAF1 1 597 0.772 5 0.688 1 0.510 0
BRAF 4 685 0.733 1 0.744 9 0.582 6

Note: Average R2, RMSE and MAE of 10-fold cross-validation results are 
shown. NOI indicates the number of kinase inhibitors. 
注：结果展示了 10 倍交叉验证结果的平均 R2、RMSE 和 MAE。NOI
表示激酶抑制剂的数量。 

 

at the development of multi-target drugs and target 
selective drugs that avoid the non-ideal CDK 
isoforms[15,32]. Members of MAPK subfamilies are 
part of key components in cellular signaling 
networks, which are being explored as potential 
targets for CNS diseases[33] and cancers[34]. The 
multi-task MolMapNet models produced good 
performances for the low-sample and higher-sample 
kinases in the RAF, CDK, and MAPK subfamilies 
(Tab. 3−5, Fig. 2−4). For the low-sample kinases in 
these three subfamilies, the R2 value are 
0.696 3−0.746 0, 0.327 7−0.745 5, and 0.431 1−0.696 2 
respectively, the RMSE values are 0.532 9, 
0.350 5−0.800 0, and 0.713 6−1.171 6. The MAE 
values are 0.380 4, 0.278 9−0.706 1 and 0.530 2−0.923 9. 
For the higher-sample kinases in these three 
subfamilies, the R2 value are in the range of 
0.671 4−0.766 8, 0.337 2−0.665 4, and 0.678 9−0.802 2 
respectively, the RMSE values are in the range of 
0.715 3−1.675 5, 0.678 5−0.884 0 and 0.252 0−0.904 0 
respectively, and the MAE values are in the range of 
0.540 3−1.481 1, 0.502 5−0.669 3 and 0.170 9− 0.923 9 
respectively. Our studies showed the good ability of 
the multi-task MolMapNet models in inhibitory 
activity prediction for both low-sample and 
higher-sample kinases in the L-type subfamilies. 

 
Tab. 3  Inhibitory activity prediction performance of 
multi-task MolMapNet on the L-type RAF subfamily 
表 3  多任务 MolMapNet 对 L 型 RAF 亚家族的抑制剂活

性预测结果 
Kinase NOI R2 RMSE MAE 

ARAF 94 0.746 0 0.532 9 0.380 4 
RAF1, MP2K1 137 0.696 3 0.687 1 0.519 6 
RAF1 1597 0.766 8 0.715 3 0.540 3 
BRAF 4685 0.671 4 1.675 5 1.481 1 

Note: Average R2, RMSE and MAE of 10-fold cross-validation results are 
shown. NOI indicates the number of kinase inhibitors. 
注：结果展示了 10 倍交叉验证结果的平均 R2、RMSE 和 MAE。NOI
表示激酶抑制剂的数量。 

Tab. 4  Inhibitory activity prediction performance of 
multi-task MolMapNet on the L-type CDK subfamily  
表 4  多任务 MolMapNet 对 L 型 CDK 亚家族的抑制剂活

性预测结果 
Kinase NOI R2 RMSE MAE 

CDK14 24 0.669 7 0.524 1 0.425 9
CDK1,CCND3 dual kinase 30 0.745 5 0.350 5 0.278 9
CDK8,CDK19 dual kinase 55 0.327 7 0.757 3 0.571 3
CCNC 62 0.528 4 0.705 7 0.531 2
CCNA1 68 0.645 3 0.941 6 0.706 1
CDK1,CCNA2 dual kinase 77 0.383 9 0.763 4 0.554 3
CCNK 92 0.665 5 0.772 1 0.551 5
CCNY 96 0.447 5 0.800 0 0.642 0
CDK19 205 0.337 2 0.803 7 0.560 2
CCNC 285 0.384 2 0.884 0 0.669 3
CCNB2,CCNB3 dual kinase 586 0.579 3 0.846 7 0.631 2
CDK7 589 0.442 2 0.714 2 0.536 8
CDK8 705 0.569 9 0.846 2 0.641 3
CDK1,CCNB1 dual kinase 939 0.617 2 0.795 3 0.584 2
CDK2,CCNA2 dual kinase 930 0.583 3 0.826 7 0.628 3
CDK9 1170 0.631 4 0.678 5 0.502 5
CDK5 1305 0.510 1 0.684 3 0.504 7
CCNA1 1303 0.665 4 0.799 9 0.611 7
CDK1 2223 0.625 9 0.746 6 0.560 1
CDK2 3285 0.651 3 0.788 4 0.600 8

Note: Average R2, RMSE and MAE of 10-fold cross-validation results are 
shown. NOI indicates the number of kinase inhibitors. 
注：结果展示了 10 倍交叉验证结果的平均 R2、RMSE 和 MAE。NOI
表示激酶抑制剂的数量。 
 
Tab. 5  Inhibitory activity prediction performance of 
multi-task MolMapNet on the L-type MAPK subfamily  
表 5  多任务 MolMapNet 对 L 型 MAPK 亚家族的抑制剂

活性预测结果 
Kinase NOI R2 RMSE MAE 

MARK1 24 0.646 5 0.894 0 0.744 3
AAPK2 26 0.696 2 0.843 3 0.600 9
SIK2 51 0.522 3 1.065 1 0.825 1
KCC4 53 0.582 4 0.713 6 0.530 2
MARK4 72 0.431 1 0.841 3 0.577 3
NUAK1 75 0.618 6 1.171 6 0.923 9
AAPK2, AAKG1, AAKB1 

multi-kinase 103 0.798 8 0.680 8 0.539 7

MARK1 245 0.709 1 0.894 0 0.744 3
KCC1D 375 0.604 7 0.515 3 0.387 5
AAPK2, AAKB2, AAKG1 

multi-kinase 396 0.802 2 0.670 9 0.485 4

BRSK1 623 0.204 8 0.514 6 0.359 3
MARK2 662 0.266 2 0.556 8 0.401 1
KCC1A 711 0.238 9 0.395 9 0.257 9
MARK3 842 0.491 0 0.613 0 0.411 2
PASK 855 0.538 4 0.252 0 0.170 9
AAPK1 946 0.209 0 0.629 6 0.461 7
MELK 1 419 0.792 7 0.639 6 0.480 3
CHK1 3 202 0.631 3 0.904 0 0.699 4

Note: Average R2, RMSE and MAE of 10-fold cross-validation results are 
shown. NOI indicates the number of kinase inhibitors. 
注：结果展示了 10 倍交叉验证结果的平均 R2、RMSE 和 MAE。NOI
表示激酶抑制剂的数量。 
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Fig. 2  RAF target (CHEMBL1169596) multi-task regression training and testing ten-fold scatter plot 
图 2  RAF 靶点(CHEMBL1169596)多任务回归训练和测试十折散点图 
 

 
Fig. 3  CNKK target (CHEMBL3038475) multi-task regression training and testing ten-fold scatter plot 
图 3  CNKK 靶点(CHEMBL3038475)多任务回归训练和测试十折散点图 
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Fig. 4  AAPK2 target(CHEMBL2116) multi-task regression training and testing ten-fold scatter plot 
图 4  AAPK2 靶点(CHEMBL2116)多任务回归训练和测试十折散点图 
 

2.3  Comparison of the inhibitory activity prediction 
performance of multi-task MolMapNet and single-task 
MolMapNet on low-sample kinases 

Our study indicated that multi-task DL 
strategies are capable of enhanced inhibitory activity 
prediction for low-sample targets. To further 
evaluate this capability, we conducted an additional 

study to compare the inhibitory activity prediction 
performance of multi-task and single-task 
MolMapNet models on 6 low-sample kinases of the 
CDK, RAF, and CAMK1 subfamilies. Tab. 6 
provides the average R2, RMSE and MAE of 10-fold 
cross-validation results for the multi-task and 
single-task  MolMapNet  models  of  each  kinase 

 

Tab. 6  Comparison of the inhibitory activity prediction performance of multi-task and single-task MolMapNet models on 2, 2 
and 3 low-sample kinases of the CDK, RAF and MAPK subfamilies 
表 6  多任务和单任务 MolMapNet 模型分别对 CDK、RAF 和 MAPK 亚家族中 2，2 和 3 个低样本激酶的抑制剂活性预测

性能比较 
Family 
Name 

Target 
Name CHEMBL_ID NOI R2_m R2_s R2_ 

(m-s)/s/% RMSE_m RMSE_s RMSE_ 
(m-s)/s/% MAE_m MAE_s MAE_

(m-s)/s/%
CDK CCNK CHEMBL3038475 92 0.605 7 0.616 2 −1.71 0.859 6 0.707 7 21.47 0.645 3 0.581 6 10.95 
CDK CCNY CHEMBL4296115 96 0.403 4 0.268 5 50.24 0.803 7 0.763 7 5.24 0.615 1 0.638 3 −3.63 
CAMK1 MARK4 CHEMBL5754 72 0.524 8 0.247 5 112.03 0.756 6 0.785 0 −3.61 0.543 6 0.626 9 −13.29 
CAMK1 NUAK1 CHEMBL5784 75 0.512 2 0.325 6 57.31 1.196 4 1.365 0 −12.35 0.990 0 1.151 1 −13.99 
CAMK1 AAPK2, 

AAKG1, 
AAKB1 

CHEMBL3038455 103 0.814 0 0.867 1 −6.12 0.610 6 0.543 3 12.39 0.466 3 0.418 5 11.42 

RAF ARAF CHEMBL1169596 94 0.850 0 0.652 5 30.26 0.531 8 0.730 8 −27.24 0.377 8  0.619 6 −39.02 
RAF RAF1, 

MP2K1 
CHEMBL2111351 137 0.640 3 0.609 8 4.99 0.715 5 0.695 4 2.89 0.547 4  0.556 2 −1.59 

Note: R2_m, and R2_s, RMSE_m and RMSE_s, and MAE_m and MAE_s are the average R2, RMSE and MAE of 10-fold cross-validation results for the 
multi-task and single-task MolMapNet models respectively. The (m-s)/s value represents the relative difference of the R2, RMSE, and MAE values of the 
multi-task and single-task models. The bold characters indicates the positive improvement of the multi-task model over single-task model(increased R2 or 
decreased RMSE or MAE). 
注：R2_m 和 R2_s、RMSE_m 和 RMSE_s、MAE_m 和 MAE_s 分别为多任务和单任务 MolMapNet 模型 10 倍交叉验证结果的平均值 R2、RMSE
和 MAE。(m-s)/s 值表示多任务模型和单任务模型的 R2、RMSE 和 MAE 值的相对差值。加粗字体表示多任务模型较单任务模型有积极的改进(增
加 R2 或降低 RMSE 或 MAE)。 
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respectively. For the CDK subfamily, there are 50% 
of the low-sample kinases with the relative R2 values 
increased by 50.24%, though both of the low-sample 
kinases with the relative RMSE increased by <0.05, 
the CCNY low-sample kinases with the relative 
MAE decreased by <0.62. For the RAF subfamily, 
there are 50% of the low-sample kinases with the 
relative R2 values increased by >0.2, 50% of the 
low-sample kinases with the relative RMSE 
decreased by <0.2, 50% of the low-sample kinases 
with the relative MAE decreased by <0.23 
respectively. For the CAMK1 subfamily, there are 
66.7% of the low-sample kinases with the relative R2 
values increased by >50%, though one of the 
low-sample kinases with the relative RMSE 
increased by comparative average of 0.06, and both 
of the low-sample kinases with the relative MAE 
decreased by comparative average of 0.08. These 
results further showed the significantly enhanced 
capability of the multi-task transfer learning 
approach, particularly the multi-task MolMapNet 
method, in the prediction of the inhibitory activity 
values of the low-sample kinases. 
3  Concluding Remarks 

Substantial number of kinases have not yet been 
fully explored as therapeutic targets in terms of drug 
approval[35]. There is big room for the development 
of drugs targeting these kinases for the treatment of 
cancers and other diseases. The rapid development 
and successful applications of artificial intelligence 
in other fields has allowed it to be actively explored 
in drug discovery, with the expectation to shorten the 
cycle and cost of traditional drug development with 
the help of DL technology. The bioactivity data on 
the public database has the problem of lack of data 
magnitude and quality dimensions, and the number 
of active inhibitors corresponding to some kinase 
targets and newly discovered kinase targets is 
insufficient. How to solve such low sample data is 
also the current core baffle. In our research, we 
introduced MolMapNet, a high-efficiency model for 
map reinforcement learning based on CNN. Its 
built-in MolMap has collected and mapped > 
8 000 000 compounds in databases such as PubChem 
in advance, and has established rich structures and 
physicochemical properties. and help to improve the 
generalization performance of the model, based on 
this basis, we construct single-task regression and 
multi-task regression models of the kinase family[36]. 

The results of our studies clearly demonstrated 
that MolMapNet has good generalization capability, 
and is significantly better than single-task regression 
in multi-task regression modeling, and can establish 
a good transfer learning effect between different 

functional kinase family targets[37]. The framework 
of our established multi-task regression activity 
prediction model for kinase targets can also be 
transferred to other types of targets such as G 
Protein-Coupled Receptors and partial ion channels, 
to predict the activity value of the active compound 
of the corresponding target, that is the model has the 
characteristics of being portable and general. Our 
work still has some limitations, such as part of the 
target activity prediction accuracy of inhibitors is 
insufficient, and the overfitting phenomenon in low 
sample training and prediction, but the model 
structure and parameters of loss function optimized 
in greater depth can better solve the shortcomings 
existing in current models. There is still room for 
further optimization of the model, and it is expected 
to achieve improved activity prediction 
performances. Further development of the multi-task 
DL methods can offer useful tools for drug discovery 
against low-sample targets. 
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