Low Sample Kinase Inhibitory Activity Prediction Capability of Multi-task Deep Convolutional Neural
Networks Under Knowledge-based Molecular Representations
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ABSTRACT: To facilitate drug discovery, deep learning models have been developed for the prediction of inhibitors of various
targets including kinases, achieving high prediction performances. Nonetheless the ability of deep learning on low-sample targets
(<100 known active molecules) has not been adequately tested. Leveraging the good activity prediction capability of a recently
emerged deep convolutional neural network MolMapNet method under knowledge-based molecular representations, this study
developed multi-task MolMapNet models for inhibitory activity prediction of 19 low-sample kinases and 43 higher-sample
kinases of 6 kinase subfamilies. The developed multi-task MolMapNet models for all low-sample and higher-sample kinases
significantly enhanced the activity prediction performance over the single-task models. The activity prediction indicators such as
R? values were in the good performance ranges of 0.651 3-0.749 8 for most kinases. These suggest the usefulness of the
multi-task transfer learning strategy in activity prediction of low-sample targets.
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Improvement of the efficiency of new drug
development remains a key issue and challenge to the
pharmaceutical communities. Machine learning and
deep learning(DL) methods have been extensively
explored in biomedicine and drug discovery,
achieving promising performances with artificial
intelligence assisted drugs(e.g. ISM00055!)) entering
clinical trials. Pharmaceutical DL can be based on
different various representations of molecular
properties, which include molecular graph-based
feature representations”™), molecular string-based
representations!®®), image-based representations®!%,
and knowledge-based molecular representationst!!"1],
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These DL methods achieved promising performances
in the prediction of various pharmaceutical properties
such as activities, pharmacokinetic properties and
toxicological properties. Nonetheless, the ability of
these DL methods on low-sample targets(with <100
known active molecules) has not been adequately
tested. Low-sample targets are important in drug
discovery because they are mostly in the earlier-stages
of discovery processes, typically in need for finding
more active molecules as potential drug candidates.
Therefore, the development and testing of DL
methods for low-sample targets are useful for
facilitating earlier-stage drug discovery.
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In this work, we probed this question by testing
the ability of a newly developed MolMapNet deep
convolutional neural network method under the
knowledge-based molecular representations!!?! in the
prediction of inhibitors of low-sample kinase targets.
MolMapNet was selected because of its good
performances on multiple benchmark datasets,
including multi-task datasets!!?. We specifically
developed multi-task MoMapNet models for 6
kinase subfamilies, each containing both low-sample
kinases(<100 known inhibitors) and higher-sample
kinases(>250 known inhibitors). The performance of
these models on the low-sample kinases as well as
higher-sample kinases were evaluated. MolMapNet
explores broadly leaned knowledge-based molecular
representations for DL of pharmaceutical properties.
The molecular features were derived from the MolMap
algorithms trained from 8 million compounds from the
PubChem database using a hierarchical method!'!.
This enables efficient learning of pharmaceutically
relevant molecular features by a CNN architecture.
In this work, MolMapNet regression prediction
models were developed for predicting the activity of
kinase inhibitors!"?.

Kinases constitute a large family of therapeutic
targets, and many kinases are the targets of approved
and clinical trial drugs!'*. Nonetheless, at least 30%
of kinases are still underdeveloped!'>. For instance,
LATS2 of the NDR subfamily is a key target for
malignant peritoneal mesotheliomal'®], but there are
only 27 known inhibitors in the ChEMBL database,
and there is no approved drug for this target. It is
very difficult to develop DL models for such
low-sample target, and special strategies are
needed!'”l. The core principle of low-sample DL is to
achieve the effect of higher-sample DL based on the
existing data, albeit being far less than the typical
data-sizes of conventional DLI3). One useful
strategy is the transfer learning!'’!. In particular, the
multi-task strategy allows the collective learning of
low-sample and higher-sample targets of the same
subfamily under the same DL architecture, wherein
the features learned from higher-sample targets can
be transferred for the learning of low-sample targets.
Therefore, we aimed to establish a multi-task
regression DL model for the activity prediction of
low-sample kinase targets based on the MolMapNet
multi-task architecture!!?].

1 Material and methods
1.1 Data collection and processing

Human kinase targets were searched from the
ChEMBL database, and the inhibitor activity data of
the identified targets were downloaded through the
ChEMBL_ websource client on the ChEMBL
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database!!. Tn order to eliminate the dimensional

gap and the variation degree of kinase inhibitor
activity data, the standard pChEMBL is used to
represent the activity value of inhibitors, allowing
comparison of multiple roughly comparable
measurements on a negative log scale, which is
defined as: —Log(molar ICso, ECso, Ki)+9. The
activity values based on these three indicators are
combined by a Python code. For the inhibitors with
multiple activity values against the same, kinase, the
median activity value was tentatively chosen as the
activity values. We selected three H-type kinase
subfamilies dominated by higher-sample(>200
known inhibitors) kinases and three L-type kinase
subfamilies dominated by low-sample(<100 known
inhibitors) kinases(Tab. 1). The list of kinases and
the number of inhibitors of these subfamilies are
provided in Supplementary Tab. 1. The inhibitors of
all kinases of each subfamily forms a dataset for
developing multi-task DL models. These datasets
were normalised based on established normalization
algorithm!®"’,

Tab. 1 List of the H-type kinase subfamilies dominated by
higher-sample(>200 inhibitors) kinases and L-type kinase
subfamilies dominated by low-sample kinases(<100
inhibitors)

1 H-B e 5k (B R 30 4 57 2k B >200) 0 LY 9 g
T XK k(A # 7 2 B <100)F RICE

. HSK vs
Type Subfamily HSKs=200 LSKs=<100 LSK ratio
H-type Tyrosine protein kinase 4 1 4
subfamily ~EGFR subfamily
AGC protein kinase 3 1 3
AKT subfamily
Atypical protein kinase 4 2 2
PIKK subfamily
L-type TKL protein  kinase 2 3 0.67

subfamily RAF subfamily
CMGC protein kinase 12 27 0.44
CDK subfamily

Note: Each subfamily was used for developing multi-task deep learning
models to predict the inhibitors of each kinase in the subfamily. HSKs
indicates number of higher-sample kinases, and LSKs indicates number
of low-sample kinases.
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1.2 MolMap molecular representations

The SMILES codes of kinase inhibitors were
converted to standard SMILES codes by RDKit. The
MolMap software package can be used to convert
the standard SMILES code of inhibitors into
advanced two-dimensional features such as
molecular descriptors and fingerprints, and further
build a two-dimensional molecular feature map,
embedding the feature relationship into the
two-dimensional space by means of UMAP. In order
to ensure the efficiency of model training, it is

RN FHZ55% 2022 48 11 A 45 39 #5455 21 1)



essential to remove the repetitive inhibitor SMILES
sequence and the ligand activity files with no activity
value before transformation*!!,
1.3 MolMapNet architecture and hyperparameters

MolMapNet architecture is in Fig. 1. Each
model has comparatively few parameters, which uses
an early stop strategy to reduce overfitting and
computational costs. We performed stratiKFOLD
10-fold cross validation for each model. After the
activity value data of small molecule inhibitors
against kinase targets were divided into 0, 1, 2, 3, 4,
5, 6 and 7 categories according to (0, 10], (10, 100],
(100, 1000], (1000, 10000], (10000, 100 000],
(100 000, 1000 000], (1000000, 10000 000],
(10 000 000, infinity), data was stratified by means
of stratiKFOLD. The training of the model is carried
out by inputting the divided training set, and then the
test set tests the training effect of the model, makes a
prediction, and then obtains the evaluation result.
The verification set is mainly used to evaluate the
results and determine how to adjust the super
parameters of the model?*23],
1.4 Model evaluation

Three metrics were used for evaluating our
developed models: R>, MAE, RMSE. R? reflects the
linear correlation between the predicted value and
the real value of the model, ranging from —1 to 1.
The greater the absolute value of R%, the stronger the
linear correlation between the predicted value and
the real value. RMSE represents the degree of
deviation between the predicted value and the real
value. MAE is the average value of the difference
between the predicted value and the real value after
taking the absolute value. For R?, the higher and
closer the value to 1, the better the efficiency of the
predictive model, whereas for MAE and RMSE, the
lower the value and closer to 0, the better the
predictive performance of the model®*!.
1.5 Model optimization

We utilize dual-input channel to input data
converted into descriptors and fingerprints into
MolMapNet model for operation. When the number
of kinase target inhibitors is <50, the number of
compounds in part of the fold may be <2, so that the
Nan value needs to be returned to avoid the
abnormal interruption of the program caused by the
inability of R? to calculate. If the test set data is <1,
the Nan value needs to be returned to avoid program
exceptions caused by RMSE calculation
interruption'?”. In the regression task, the loss
function is generally set as mean squared error. After
many updating iterations, it has proved that the
fitting efficiency of the primary loss function is not
high. We introduced MASK and Pos weight[i]
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parameter to improve the fitting efficiency of the
model. The loss function is multiplied by MASK.
The core function of MASK is to eliminate the
influence of the vacancy value in the data files on the
loss function, replacing the active null value in
targets and distinguishing it from the non null value
samples!?®. In the regression, the value of MASK
should be greater than the maximum active value,
otherwise the convergence anomaly of the model
loss function will occur. Pos_weight[i] is defined as
total row number of the data column divided by the
effective row number. Pos weight[i] is able to
weight the data and reduce the error caused by the
target with small data volume when optimizing the
parameters of the loss function during model training
and prediction®”,
2 Results
2.1 Inhibitory activity prediction performance of
multi-task MolMapNet on the H-type kinase
subfamilies dominated by higher-sample kinases

We first evaluated the performance of multi-task
MolMapNet models on three H-type kinase
subfamilies dominated by higher-sample kinases. The
three subfamilies are ERBB, AKT, PIKK with 4 and 1,
3 and 1, 4 and 2 higher-sample and low-sample
kinases respectively(Tab. 1). ERBB subfamily of
kinases are important for non small cell lung cancer
and breast cancer treatment with multiple approved
drugs!'>. AKT and PIKK kinases have been explored
for anticancer therapeutics®®??).  With sufficient
number of inhibitors for vast majority of kinases,
these three subfamilies represent the relatively-easier
DL tasks. The multi-task MolMapNet models
achieved good overall performances for the
low-sample and higher-sample kinases in the ERBB,
AKT and PIKK subfamilies(Tab. 2). For the
low-sample kinases in these three subfamilies, the R?
value are 0.749 8, 0.668 3, and 0.559 4 respectively,
the RMSE values are 0.7919, 0.4109 and 0.991 6,
and the MAE values are 0.673 2, 0.351 0 and 0.738 9.
For the higher-sample kinases in these three
subfamilies, the R*> value are in the range of
0.3379-0.749 8, 0.668 3-0.841 1, 0.180 8-0.274 3
respectively, the RMSE values are in the range of
0.5279-0.861 1, 0.4109-0.692 8, 0.695 0-1.065 6
respectively, and the MAE values are in the range of
0.361 8-0.692 1, 0.347 4-0.5262, 0.568 7-0.907 5
respectively. In the evaluation of regression models
such as QSAR models, the threshold of R? values is
0.68%%, Therefore, the multi-task MoIMapNet models
are of good performances in four CDK kinase
inhibitors have been approved for the inhibitory
activities of low-sample and higher-sample kinases in
the H-type kinase subfamilies.
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Fig. 1 Workflow of MolMapNet architecturel!!]

Left input: descriptor map; right input: fingerprint map. Trainable parameters: left single path is 0.40 million; right single path is 0.32 million; both path

is 0.80 million.
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2.2 Inhibitory activity prediction performance of
multi-task MolMapNet on the L-type kinase
subfamilies dominated by low-sample kinases

We then evaluated the performance of
multi-task MolMapNet models on three L-type
kinase subfamilies dominated by low-sample kinases.
The three subfamilies are RAF, CDK, and MAPK
with 2 and 2, 12 and 8, and 10 and 6 higher-sample
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and low-sample kinases respectively(Tab. 1). The
BRAF V600E/K mutant of RAF subfamilies is the
target of approved drugs for the treatment of
melanoma, and intensified efforts have been directed
at the development of RAF inhibitors as potential
anticancer therapeutics!!>3!l. So far, four CDK kinase
inhibitors have been approved for anticancer
therapeutics and on-going efforts are being directed
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Tab. 2 Inhibitory activity prediction performance of
multi-task MolMapNet on each of the four H-type kinase
subfamilies EGFR, AKT, PIKK and RAF

+=2 %% MolMapNet % 4 4~ H & % # T X i EGFR.
AKT. PIKK #1 RAF #7474 7| & 1 0 4

Type Kinase NOI __R2  RMSE _MAE
EGFR EGFR, ERB3, ERBB4 254 0.7037 0.7023 0.5505
subfamily ERBB4 901 0.7369 0.5277 0.3572
ERBB2 3127 0.6766 0.6353 0.459 4

EGFR 9425 06812 08217 0.6211

AKT AKT3 1082 07821 05325 03508
subfamily AKT2 1699 08360 05237 03796
AKTI 4074 07804 06774 05136

RAF RAFI 1597 07725 0.6881 05100
subfamily BRAF 4685 07331 07449 0.5826

Note: Average R?, RMSE and MAE of 10-fold cross-validation results are
shown. NOI indicates the number of kinase inhibitors.

W BRIBRT 10 538 XRAELE S0 B2, RMSE fil MAE, NOI
FERBLREIMHI 7R

at the development of multi-target drugs and target
selective drugs that avoid the non-ideal CDK
isoforms!'>*2, Members of MAPK subfamilies are
part of key components in cellular signaling
networks, which are being explored as potential
targets for CNS diseases®! and cancers®®*. The
multi-task MolMapNet models produced good
performances for the low-sample and higher-sample
kinases in the RAF, CDK, and MAPK subfamilies
(Tab. 3-5, Fig. 2—4). For the low-sample kinases in
these three subfamilies, the R> value are
0.696 3-0.746 0, 0.327 7-0.745 5, and 0.431 1-0.696 2
respectively, the RMSE values are 0.5329,
0.350 5-0.800 0, and 0.713 6-1.171 6. The MAE

values are 0.380 4, 0.278 9—0.706 1 and 0.530 2—0.923 9.

For the higher-sample kinases in these three
subfamilies, the R?> value are in the range of
0.671 4-0.766 8, 0.337 2—0.665 4, and 0.678 9—0.802 2
respectively, the RMSE values are in the range of
0.7153-1.675 5, 0.678 5-0.884 0 and 0.252 0—0.904 0
respectively, and the MAE values are in the range of
0.540 3-1.481 1, 0.502 5-0.669 3 and 0.170 9-0.923 9
respectively. Our studies showed the good ability of
the multi-task MolMapNet models in inhibitory
activity prediction for both low-sample and
higher-sample kinases in the L-type subfamilies.

Tab. 3  Inhibitory activity prediction performance of
multi-task MolMapNet on the L-type RAF subfamily

%3 %1% MolMapNet 4 L & RAF I K ik i 37 | 5| /&
P TN 2 R

Kinase NOI R? RMSE MAE
ARAF 94 0.746 0 0.5329 0.380 4
RAF1, MP2K1 137 0.696 3 0.687 1 0.519 6
RAF1 1597 0.766 8 0.7153 0.540 3
BRAF 4685 0.671 4 1.6755 1.4811

Tab. 4  Inhibitory activity prediction performance of
multi-task MolMapNet on the L-type CDK subfamily

T4 %1% MolMapNet *f L & CDK T 5 ik #9 4 #] 7 &
M TN 4 F

Kinase NOI R? RMSE MAE
CDK14 24 0.669 7 0.524 1 0.4259
CDK1,CCND3 dual kinase 30 0.745 5 0.3505 0.278 9
CDKS8,CDK19 dual kinase 55 03277 0.757 3 0.5713
CCNC 62 0.528 4 0.705 7 0.5312
CCNAL 68 0.6453 0.941 6 0.706 1
CDK1,CCNA2 dual kinase 77 03839 0.763 4 0.5543
CCNK 92 0.665 5 0.772 1 0.5515
CCNY 96 0.447 5 0.8000 0.642 0
CDK19 205 0.3372 0.803 7 0.560 2
CCNC 285 0.384 2 0.884 0 0.669 3
CCNB2,CCNB3 dual kinase 586 0.579 3 0.846 7 0.6312
CDK?7 589 0.442 2 0.714 2 0.536 8
CDKS8 705 0.569 9 0.846 2 0.6413
CDKI1,CCNBI dual kinase 939 0.617 2 0.7953 0.584 2
CDK2,CCNA2 dual kinase 930 0.583 3 0.8267 0.628 3
CDK9 1170 0.631 4 0.678 5 0.502 5
CDK5 1305 0.5101 0.684 3 0.504 7
CCNAL1 1303 0.665 4 0.799 9 0.6117
CDK1 2223 0.6259 0.746 6 0.560 1
CDK2 3285  0.6513 0.788 4 0.600 8

Note: Average R?, RMSE and MAE of 10-fold cross-validation results are
shown. NOI indicates the number of kinase inhibitors.

e G5RBIR T 10 f538 RAIELE R Y14 R>. RMSE il MAE, NOI
FETR BRI 590 A R

Tab. §  Inhibitory activity prediction performance of
multi-task MolMapNet on the L-type MAPK subfamily

+*5 %1% MolMapNet xt L & MAPK I X 7k # 41 %] 7
M TN 45

Kinase NOI R RMSE  MAE
MARKI 24 06465 08940 07443
AAPK2 26 06962 08433 0.6009
SIK2 s1 05223 10651 08251
KCC4 53 05824 07136 05302
MARK4 72 04311 08413 05773
NUAKI 75 06186 11716 09239
AAPKS, AMKGLAAKBL 103 07988 0.6808 05397
MARKI 245 07091 08940 07443
KCCID 375 06047 05153 03875
AAPKS, AMKE2, AMKGT 306 08022 06709 04854
BRSKI 623 02048 05146 03593
MARK?2 662 02662 05568 04011
KCCIA 711 02389 03959 02579
MARK3 842 04910 06130 04112
PASK 855 05384 02520 01709
AAPKI 946 02090 06296 04617
MELK 1419 07927 06396 04803
CHK1 3200 06313 09040 0.6994

Note: Average R?, RMSE and MAE of 10-fold cross-validation results are
shown. NOI indicates the number of kinase inhibitors.

e SRR T 10 53 UIIESS R 1014 R?. RMSE il MAE, NOI
TR PR A

PR 255 2022 48 11 A 45 39 #5465 21 1)

Note: Average R?, RMSE and MAE of 10-fold cross-validation results are
shown. NOI indicates the number of kinase inhibitors.
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Fig. 4 AAPK?2 target(CHEMBL2116) multi-task regression training and testing ten-fold scatter plot
4 AAPK2 ¥ £ (CHEMBL2116) % £ 4 Bl V39 4k Fu 4k + 37 8% & B

2.3 Comparison of the inhibitory activity prediction
performance of multi-task MolMapNet and single-task
MolMapNet on low-sample kinases

Our study indicated that multi-task DL
strategies are capable of enhanced inhibitory activity
prediction for low-sample targets. To further
evaluate this capability, we conducted an additional

study to compare the inhibitory activity prediction
performance  of multi-task and  single-task
MolMapNet models on 6 low-sample kinases of the
CDK, RAF, and CAMKI1 subfamilies. Tab. 6
provides the average R*, RMSE and MAE of 10-fold
cross-validation results for the multi-task and
single-task MolMapNet models of each kinase

Tab. 6 Comparison of the inhibitory activity prediction performance of multi-task and single-task MolMapNet models on 2, 2
and 3 low-sample kinases of the CDK, RAF and MAPK subfamilies

R6 %% E A% MolMapNet # A 4 7| 3¢ CDK. RAF 8 MAPK T 5 ik o 2, 2 fn 3 /R4 A 8 Bl 9 407 1 77 7% 14 T

g TR
Famil Target R? RMSE MAE
Namey Nafw CHEMBL ID NOI R’ m R s (mosyiy/s RMSE_m RMSEs "0 MAEm MAEs 0
CDK CCNK  CHEMBL3038475 92 06057 06162  —1.71 08596 07077 21.47 06453 05816 1095
CDK CCNY CHEMBL4296115 96 04034 02685 5024 08037 07637 524 06151 06383 —3.63
CAMKI MARK4 CHEMBL5754 72 05248 02475 112.03 07566 07850 —3.61 05436 06269 —13.29
CAMKI NUAKI CHEMBL5784 75 05122 03256 5731 1.1964 13650 -12.35 09900 1.1511 —13.99
CAMKI AAPK2, CHEMBL3038455 103 08140 08671  —612 06106 05433 1239 04663 04185  11.42
AAKGI,
AAKBI
RAF ARAF  CHEMBL1169596 94 08500 0.6525  30.26 05318 07308 -27.24 03778 06196 —39.02
RAF RAFI, CHEMBL2111351 137 0.6403 0.6098 499 07155 06954  2.89 05474 05562 —1.59
MP2K 1

Note: B2 m, and R* s, RMSE_m and RMSE s, and MAE_m and MAE s are the average R?>, RMSE and MAE of 10-fold cross-validation results for the
multi-task and single-task MolMapNet models respectively. The (m-s)/s value represents the relative difference of the R?, RMSE, and MAE values of the
multi-task and single-task models. The bold characters indicates the positive improvement of the multi-task model over single-task model(increased R* or

decreased RMSE or MAE).

¥: R?_m Ml R%_s, RMSE_m Ml RMSE_s. MAE_m 1 MAE_s 538 2 4% 55 Rl 14T 55 MolMapNet #5410 538 IR UELS R 19 F-{H R?. RMSE
I MAE, (m-s)/s {37 24T 55 A REAT 55 BRI R, RMSE 1 MAE {H A AHIXS 258 o IR 44 3R AT 55 MR SR AT 95 MRS ARV 10 s (3%

fin R? 84 RMSE B{ MAE),
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respectively. For the CDK subfamily, there are 50%
of the low-sample kinases with the relative R? values
increased by 50.24%, though both of the low-sample
kinases with the relative RMSE increased by <0.05,
the CCNY low-sample kinases with the relative
MAE decreased by <0.62. For the RAF subfamily,
there are 50% of the low-sample kinases with the
relative R? values increased by >0.2, 50% of the
low-sample kinases with the relative RMSE
decreased by <0.2, 50% of the low-sample kinases
with the relative MAE decreased by <0.23
respectively. For the CAMKI1 subfamily, there are
66.7% of the low-sample kinases with the relative R
values increased by >50%, though one of the
low-sample kinases with the relative RMSE
increased by comparative average of 0.06, and both
of the low-sample kinases with the relative MAE
decreased by comparative average of 0.08. These
results further showed the significantly enhanced
capability of the multi-task transfer learning
approach, particularly the multi-task MolMapNet
method, in the prediction of the inhibitory activity
values of the low-sample kinases.
3 Concluding Remarks

Substantial number of kinases have not yet been
fully explored as therapeutic targets in terms of drug
approval®®!. There is big room for the development
of drugs targeting these kinases for the treatment of
cancers and other diseases. The rapid development
and successful applications of artificial intelligence
in other fields has allowed it to be actively explored
in drug discovery, with the expectation to shorten the
cycle and cost of traditional drug development with
the help of DL technology. The bioactivity data on
the public database has the problem of lack of data
magnitude and quality dimensions, and the number
of active inhibitors corresponding to some kinase
targets and newly discovered Kkinase targets is
insufficient. How to solve such low sample data is
also the current core baffle. In our research, we
introduced MolMapNet, a high-efficiency model for
map reinforcement learning based on CNN. Its
built-in MolMap has collected and mapped >
8 000 000 compounds in databases such as PubChem
in advance, and has established rich structures and
physicochemical properties. and help to improve the
generalization performance of the model, based on
this basis, we construct single-task regression and
multi-task regression models of the kinase family*¢].

The results of our studies clearly demonstrated
that MolMapNet has good generalization capability,
and is significantly better than single-task regression
in multi-task regression modeling, and can establish
a good transfer learning effect between different
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functional kinase family targets’®*’). The framework
of our established multi-task regression activity
prediction model for kinase targets can also be
transferred to other types of targets such as G
Protein-Coupled Receptors and partial ion channels,
to predict the activity value of the active compound
of the corresponding target, that is the model has the
characteristics of being portable and general. Our
work still has some limitations, such as part of the
target activity prediction accuracy of inhibitors is
insufficient, and the overfitting phenomenon in low
sample training and prediction, but the model
structure and parameters of loss function optimized
in greater depth can better solve the shortcomings
existing in current models. There is still room for
further optimization of the model, and it is expected
to  achieve  improved  activity  prediction
performances. Further development of the multi-task
DL methods can offer useful tools for drug discovery
against low-sample targets.
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