2-羟丙基-β-环糊精对酮洛芬的增溶及稳定作用

陈国广,张慧颖,李学明*,韦萍(南京工业大学制药与生命科学学院,南京 210009)

摘要:目的 制备酮洛芬 羟丙基 - β - 环糊精包合物 ,考察 2 羟丙基 - β - 环糊精对药物的增溶以及包合物在高温 、高湿 、强光照射下的稳定性。方法 溶液 搅拌法制备包合物 ;相溶解度法考察 2 羟丙基 - β - β - 环糊精对药物的增溶 ,以酮洛芬的含量为测定指标 ,分别对酮洛芬 羟丙基 - β - 环糊精包合物和混合物进行强光照射 、高温和高湿试验。结果 酮洛芬的溶解度从 0.165 mg/mL增加到 38.69 mg/mL,且在高温 、高湿和强光照射条件下,包合物中酮洛芬的含量没有明显变化,而混合物中酮洛芬的含量有明显的下降。结论 2 羟丙基 - β - 环糊精可以增大酮洛芬的溶解度,提高酮洛芬对温度、湿度和光照的稳定性。

关键词:酮洛芬;2羟丙基-β环糊精;包合物;稳定性

中图分类号: R927.13 文献标识码: A 文章编号: 1007-7693(2007)01-0039-04

Evaluation of 2-Hydroxypropylβ-Cyclodextrin as a Solubilizing and Stabilizing Agent for Ketoprofen

CHEN Guo-guang, ZHANG Hui-ying, LI Xue-ming, WEI Ping (Nanjing University of Technology, College of Life Science and Pharmaceutical Engineering, Nanjing 210009, China)

ABSTRACT: OBJECTIVE To prepare the complex including ketoprofen-hydroxypropyl-β-cyclodextrin (HP-β-CD) and investigate the solubility and stability of the complex under the strong light, high temperature and humidity. METHODS The complex was prepared by agitation method; phase-solubility method was used to evaluate the solubilizing. Using the content of ketoprofen as an index, a set of tests, such as tests under strong light and under high temperature or humidity, were taken. RESULTS The solubility of ketoprofen was increased from 0.165 mg/mL to 38.69 mg/mL. Under the affecting factors of light, temperature and humidity, the content of ketoprofen complex was not obviously changed. For physical mixture, however, the content was significantly decreased. CONCLUSION 2-HP-β-CD could increase the solubility and stability of ketoprofen.

KEY WORDS: ke top rofen; 2-hyd roxyp ropyl-β-cyclodextrin; inclusion complex; stability

酮洛芬(Ketoprofen KPF),化学名称 2-(3-苯甲酰基苯基)丙酸,属苯丙酸类非甾体抗炎药,对风湿、类风湿性关节炎、脊椎炎等有较好的疗效[1]。目前临床上使用的主要是片

剂和胶囊。酮洛芬难溶于水,对胃肠道有强烈的刺激性,生物利用度低。为了改善其溶解性、溶出性能,提高生物利用度,减少对胃肠道的刺激性,笔者选用溶解性能好、热稳定、

作者简介:陈国广,男,副教授,研究方向为药物新剂型与新技术

^{*}通讯作者:李学明,男,副教授 Tel: 025 - 83587331 E-mail: lixuem ing70@163. com

毒性低的羟丙基 -β 环糊精 (hydroxypropyl-β-cyclodextrin, HP-β-CD)^[2-3]为包合材料对其进行包合。本实验采用溶液 搅拌法制备酮洛芬 -HP-β-CD包合物 ,相溶解度法测定 KPF在不同温度 .在不同浓度 HP-β-CD水溶液中的包合稳定常数及相关的热力学常数 ,并对其溶解性以及在高温、高湿和强光照射条件下的稳定性进行考察 ,为制剂的制备及临床应用提供了实验依据。

1 仪器与药品 TU-1901 双光束紫外分光光度计 (北京谱析通仪器有限责任公司);分析天平(德国赛多利斯股份公司上海分公司); DSC 204热分析仪 (德国 NETZSCH公司);红外光谱仪 (Nicolet AVATAR 360FT - IR); 90 - 3恒温双向磁力搅拌器 (上海振荣科技有限公司); LRH - 150 - SH恒温恒湿培养箱 (广东省医疗器械厂); YB - 2型澄明度检测仪 (天津大学精密仪器厂); 酮洛芬原料药 (湖北迅达药业有限公司); HP-β-CD(西安德立生物化工有限公司);其他所用试剂均为分析纯。

- 2 方法与结果
- 2.1 包合物及混合物的制备
- 2.1.1 包合物的制备 精密称取酮洛芬和 HP-β-CD(摩尔比 1:2)分置烧杯中,加入适量无水乙醇使酮洛芬完全溶解,搅拌条件下逐滴加到 HP-β-CD的水溶液中,继续搅拌 2h。取出,40℃水浴,旋转蒸发除去溶剂,得黏稠状晶体,减压干燥即得 KPF-HP-β-CD包合物。过 80目筛,真空干燥,避光保存,备用。
- 2.1.2 物理混合物的制备 精密称取适量的酮洛芬和 HP-β-CD(摩尔比 1:2),过 80目筛混匀,置干燥器中,备用。
- 2.2 包合物和物理混合物的含量测定
- 2.2.1 紫外检测波长的确定 精密称取一定量的酮洛芬和 HP-β-CD,配置一定浓度的酮洛芬及 HP-β-CD 乙醇溶液,以乙醇为空白,在 200 ~ 400 nm 内作紫外扫描。结果表明,酮洛芬在 254 nm 处有最大吸收,而 HP-β-CD 在此波长处无吸收,所以选择检测波长为 254 nm。
- 2.2.2 标准曲线的绘制 精密称取酮洛芬 $25 \,\mathrm{mg}$,置 $100 \,\mathrm{mL}$ 量瓶中,用乙醇溶解,稀释至刻度,作为贮备液。精密量取贮备液 $0.3,0.5,0.7,0.9,1.1 \,\mathrm{mL}$,置 $25 \,\mathrm{mL}$ 量瓶中,乙醇稀释至刻度,摇匀,在 $254 \,\mathrm{nm}$ 处测定吸收度,以吸收度(A)对质量浓度(C)进行线性回归,回归方程为 A=0.0697c+0.0086, r=0.9999。结果表明在 $3.0~11.0 \,\mathrm{mg/mL}$ 范围内酮洛芬的质量浓度与吸收度呈较好的线性关系。
- 2.2.3 含量测定 分别精密称取 KPF-HP-β-CD包合物和混合物样品适量,加 10mL乙醇,超声 2h溶解。静置,取上清液,用 0.45μm的微孔滤膜过滤。精密量取续滤液,稀释适当倍数,于 254nm处测定吸光度 A,代入标准曲线方程,求得样品含量。

2.3 包合平衡常数及相关热力学参数的测定[4]

精密称取一定量的 HP-β-CD置小杯中,配制一系列不同浓度的 HP-β-CD水溶液,分别加入过量的酮洛芬(约200mg),超声振荡 5m in。分别于 25,37,45℃恒温,调节转速

100 r/m in,搅拌 2d,使其达到溶解平衡,静置。取上清液经0.45μm的微孔滤膜过滤,续滤液稀释适当倍数,于 254nm波长处测定吸收度,按标准曲线法计算酮洛芬的浓度。以酮洛芬的浓度 (mmol/L)为纵坐标, HP-β-CD浓度 (mmol/L)为横坐标,绘制平衡相溶解度图。结果见图 1。

图 1说明随着 $HP-\beta-CD$ 浓度的增加酮洛芬的溶解度也在不断地增加。根据 Higuchi等的分类,该体系属于 A_N 型,表明药物与环糊精之间的包合并不是以摩尔比 1:1的比例进行包合。一般用表观稳定常数 K_c 来衡量包合作用的强弱。根据回归方程,计算不同温度下的表观稳定常数 K_c ,计算公式为: K_c =斜率 S_0 (1 斜率),其中:斜率为回归方程的斜率, S_0 为酮洛芬在该温度下的饱和溶解度。结果见表 1。

图 1 酮洛芬在不同浓度 HP-β-CD溶液中的平衡相溶解度图

Fig 1 Phase solubility curves of ketoprofen in $HP-\beta$ -CD

$$- - - 25^{\circ}$$
 ; $- - 37^{\circ}$; $- - 45^{\circ}$

表 1 不同温度下的表观稳定常数

Tab 1 The stability constants of ketoprofen at different temperatures

T/℃	Equation	r	Kc/M ⁻¹
25	$Y = 0.0258 X + 5.96 \times 10^{-5}$	0.9953	518.3
37	$Y = 0.0328 X + 9.23 \times 10^{-5}$	0.9830	422.8
45	$Y = 0.0321 X + 1.05 \times 10^{-4}$	0.9765	365.7

再根据 Vant' Hoff方程: Log $K_c = \frac{4}{2}$ Δ H /2. 303 RT + Δ S / 2. 303 R,以 Log K_c 对 1 / T作图,由回归方程的斜率和截距求得包合过程的焓变 (Δ H)和熵变 (Δ S)值,再根据公式 Δ G = - RTLnK 计算出反应自由能,所得结果见表 2。

表 2 包合过程的有关热力学参数

Tab 2 The the modynamic parameters of inclusion complex

T. /°C			ΔΗ /	ΔS/
T/℃	K _c /M	∆G/• mol ⁻¹	k J• m ol - 1	J• k-1 • m ol-1
25	473.8	- 15.26		
37	367.4	- 15.22	- 15.86	- 2.02
45	317.1	- 15.22		

可见该包合反应的 ΔG 和 ΔH 均为负值, ΔS 为负值,说明包合过程是一个能自发进行的放热过程,即属于焓作为主要驱动力的过程。

同时考察了在不同温度下,不同浓度 HP-β-CD水溶液 对酮洛芬的增溶作用,结果见表 3。

表 3 酮洛芬在不同浓度 HP-β-CD水溶液中的溶解度

Tab 3 The solubility of ketoprofen in HP-β-CD solution

C _{H PCD}	The solu	bility of k mmol/L	e top rofe n	Enhance	d times of S1/S2	solubility
mmol/L	25℃	37℃	45℃	25℃	37℃	45℃
0	0.0511	0.0802	0.0907		_	_
1.429	0.0936	0.1419	0.1553	1.832	1.700	1.713
2.858	0.1380	0.2061	0.2168	2.700	2.570	2.391
5.716	0.1989	0.2690	0.2764	3.893	3.354	3.047
11.43	0. 2469	0.3284	0.3381	4.831	4. 095	3.728
22.86	0. 2862	0.3767	0.4092	5.600	4. 697	4.512

Note: S1: The solubility of ketoprofen in HP- β -CD solubility; S2: The solubility of ketoprofen in water

由结果可知,体系中的 KPF的溶解度随着温度的升高而增加,而且随着 HP-β-CD浓度的增加,药物的溶解度也随之增加,并且这种效应在一定范围内与 HP-β-CD的浓度和温度成正比。

2.4 溶解度的测定

称取过量的 KPF(10mg)、KPF-HP-β-CD包合物 (约相当于 10mgKPF)分别置于 10mL量瓶内,加水配成过饱和溶液,于 25℃水浴下恒温振荡 2h,使其达到溶解平衡。迅速用 0.45μm微孔滤膜过滤,取续滤液稀释适当倍数,于 254nm处测吸收度 A,代入标准曲线方程。经计算得到 KPF在水中的溶解度分别为 0.165,38.69mg/mL(n=3),包合后药物的增溶倍数为 234倍。

2.5 稳定性考察

2.5.1 光照条件下稳定性 分别精密称取包合物和物理混合物各若干份,分别密封于无色玻璃瓶中,于强度为 4000Lx 光照下照射 10d,于第 0,1,3,5,10天取样,测定酮洛芬的含量。结果表明包合物的抗光照能力明显高于混合物。

表 4 光照稳定性实验结果

Tab 4 The result of stability on light

光照时间	酮洛芬含量 /%		
/ d	包合物	混合物	
0	8.2	7.9	
1	8.2	7.5	
3	8.1	6.9	
5	8.0	6.4	
10	8.0	6.0	

2.5.2 湿稳定性实验 分别精密称取包合物和物理混合物各若干份,置于相对湿度分别为 75% (NaCl)和 92.5% (KNO₃)的密闭容器内,室温放置 10d,于第 0,1,3,5,10d取样,测定酮洛芬含量。结果表明,包合物的湿稳定性明显高于混合物。

2.5.3 热稳定性实验 分别精密称取包合物和物理混合物各若干份,分别密封无色玻璃瓶中,分别于 40,60,80℃恒温干燥箱中放置 10d,于第 0,1,3,5,10天取样,测定酮洛芬的含量。结果表明,包合物的热稳定性明显高于混合物。

中国现代应用药学杂志 2007年 2月第 24卷第 1期

表 5 湿稳定性实验结果

Tab 5 The result of stability on hum idity

相对湿度	取样时间	酮洛芬含量 /%		
/%	/ d	包合物	混合物	
75	0	8.2	7.9	
	1	8.2	7.5	
	3	8.1	6.9	
	5	8.1	6.1	
	10	8.0	5.4	
	0	8.2	7.9	
	1	8.1	7.2	
92.5	3	8.1	6.1	
	5	8.0	5.7	
	10	7.9	5.0	

表 6 热稳定性实验结果

Tab 6 The result of stability on temperature

温度	受热时间	酮洛芬	含量 /%
/℃	/d	包合物	混合物
40	0	8.2	7.9
	1	8.2	7.4
	3	8.1	6.7
	5	8.1	6.0
	10	8.0	5.5
60	0	8.2	7.9
	I	8.0	7.2
M	3	7.6	6.5
CA	5	7.4	5.7
•	10	7.0	5.1
80	0	8.2	7.9
	1	7.8	7.0
	3	7.0	6.1
	5	6.4	5.4
	10	5.8	4.0

3 讨论

3.1 羟丙基-β-环糊精是 β-CD的一种羟烷基化衍生物,它是近几年有关制备方法,毒理试验以及应用范围研究的比较透彻的衍生物之一。HP-β-CD不但可以与 β-CD一样对许多化合物具有优良的包合作用,提高被包合物质的稳定性,而且具有更高的水溶性,提高药物的溶解度。本研究中制备的包合物使药物的溶解度提高了 234倍。

3.2 本实验采用溶液 搅拌法制备包合物,通过摩尔连续递变法^[5]确定包合物的包合比,包合物的主客分子比为 2:1,而且相溶解度图也验证了药物与环糊精的包合比例不是1:1。

3.3 对酮洛芬、HP-β-CD、物理混合物(1:2)、包合物进行差示扫描量热(DSC)分析和红外光谱(IR)分析。由 DSC扫描

图谱可知,包合物的吸热峰移至 108.7℃,峰的强度也明显减小,峰型及位置与 KPF或 HP-β-CD明显不同,表明了包合物的形成。物理混合物在 111.3℃出现一吸热峰,可能与混和时出现轻微的作用有关,但是其峰强度没有明显减弱,说明只是混合物之间的简单的作用力。在 IR光谱分析中,包合物所形成的图谱掩盖了酮洛芬的特征峰,基本呈现 HP-β-CD图谱的特征,说明酮洛芬已进入环糊精的空穴内,证明了包合物的形成。

3.4 稳定性实验结果表明,包合物对光、热、湿的稳定性明显高于混合物,说明包合物能够明显增加药物的稳定性,为新制剂的开发提供了依据。

参考文献

[1] CHEN X Q, JIN Y Y. New edit medicine (新编药物学)[M]. 14th ed. Beijing: People's Medical Publishing House, 2003: 192.

- [2] Sarah Gould, Robert C. Scott 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review [J]. Food Chem. Toxicol, 2005, 43 (10):1451-1459.
- [3] XIE B T, YANG G W. Characteristic of hydroxylpropyl-beta-cyclodextrin and its application and safety in the area of medicine[J]. Word phamacy-Chemicals, Biochem Pham Division(国外医药•合成药,生化药制剂分册), 2002, 23(5):302-306.
- 4] JIANG D Z, WANG Z X. Optim ization of the conditions of making the inclusion of tretinoin by hydroxylpropyl-beta-cyclodextrin and assay of the them odynamical parameter of the including procedure [J]. J Shenyang Pham Uni (沈阳药科大学学报), 2004, 21 (1):18-21.
- 5] LUB. New dosage foms and technology(药物新剂型与新技术)[M]. Beijing: People's Medical Publishing House, 1998: 32.

收稿日期:2006-03-21