利用 SPSS估算血管外给药的药动学参数

莫志江 (广西壮族自治区人民医院药剂科,广西 南宁 530021)

摘要:目的 利用 SPSS估算血管外给药室模型的药动学参数。方法 使用 SPSS的非线性回归(nonlinear regression)拟合模拟的两室模型血管外给药的药 时数据;依据 95%置信区间决定是否在模型中保留滞后时间($t_{\rm lag}$)项。结果 SPSS估算的药动学参数准确可靠;根据 $t_{\rm lag}$ 95%置信区间决定是否在模型中保留 $t_{\rm lag}$ 项是合理的。结论 SPSS适用于估算血管外给药室模型的药动学参数。

关键词:非线性回归; SPSS;药动学参数;拟合;血管外给药

中图分类号: R969.1 文献标识码: A 文章编号:1007-7693(2005)03-0221-04

Estimating the pharmacokinetic parameters in extravascular administration by SPSS

MO Zhi-jiang (Department of Pha macy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China)

ABSTRACT: OBJECTIVE To estimate the pharmacokinetic parameters of compartment models with extravascular administration

using SPSS. **METHOD** Concentration-time data from the simulation of two-compartment model with the 1 st order absorption and lag time (t_{lag}) were fitted using SPSS nonlinear regression. 95% confidence interval (95% CI) for t_{lag} was used to determine if t_{lag} item remained in the model. **RESULTS** The pharmacokinetic parameters obtained from SPSS were exact and reliable. It was reasonable to determine if t_{lag} item remains in the model according to its 95% CI. **CONCLUSION** SPSS is suitable for estimating the pharmacokinetic parameters of compartment models with extravascular administration.

KEY WORDS: nonlinear regression; SPSS; pharmacokinetic parameters; fit; extravascular administration

药动学参数的估算一般使用 3P87或 3P97软件。笔者在工作中发现,利用 SPSS强大的数据处理能力同样可以很好地完成药动学参数的所有估算,结果准确可靠,且对拟合出的参数提供 95%置信区间(95% confidence interval, 95% CI),这对于进一步分析拟合结果十分有用。

1 材料

1.1 数据来源

两室模型血管外给药、一级吸收过程的药 时公式为 $C = A_1 e^{-\alpha(t-t_{lag})} + A_2 e^{-\beta(t-t_{lag})} - (A_1 + A_2) e^{-k\alpha(t-t_{lag})}$ 公式 (1) 为便于验证结果,依公式 (1)所计算出的理论血药浓度进行拟合。设模型的基本参数为 $X_0 = 10 \, \mathrm{mg}$, F = 1, $ka = 3 \, \mathrm{h}^{-1}$, $\alpha = 2 \, \mathrm{h}^{-1}$, $\beta = 0.1 \, \mathrm{h}^{-1}$, $A_1 = 20 \, \mathrm{mg}$ • L^{-1} , $A_2 = 1 \, \mathrm{mg}$ • L^{-1} , $T_{lag} = 0.02 \, \mathrm{h}$,按以上参数计算出的理论药,时数据见表 1。实际输入 SPSS的浓度数据按公式 (1)自动产生,精确至

小数点后 16位。 1.2 数据处理

使用 SPSS 10.0 for Windows,主要为非线性回归 (nonlinear regression)。

表 1 依据两室模型血管外给药、一级吸收过程(含滞后时间)模拟产生的药时数据

Tab 1 Concentration-time data from the simulation of two-compartment model with the 1 st order absorption and t_{lao}

时间 (h)	浓度(mg• L-1)	时间 (h)	浓度 (mg· L-1)
0.20	2.698	2.00	1.146
0.40	3.600	4.00	0.679
0.60	3.527	8.00	0.450
0.80	3.105	12.00	0.302
1.00	2. 61 4	16.00	0.202

2 方法与结果

2.1 单室模型、一级吸收过程的拟合

该模型的药 时公式为

$$c = \frac{F^{\bullet} X_0 \bullet k_a}{V(k_a - k)} \left(e^{-k(t - t_{\text{lag}})} - e^{-k_{\alpha}(t - t_{\text{lag}})} \right) \qquad \triangle \vec{\Xi} (2)$$

将公式 (2)输入 SPSS的非线性回归 ,将 $X_0=10\,\mathrm{mg}$, F=1 的原假设代入 ,分别按考虑和忽略 t_{lig} 项拟合表 1 的数据 ,结果见表 2 ,表 3 。

表 2 SPSS依据单室模型、一级吸收过程(含 t_{ac})拟合所得的药动学参数

Tab 2 The pharmacokinetic parameters estimated by SPSS according to one-compartment model with the 1st order absorption and t.

Parameter Starting Value	Ctanting Value	Estimate	Cal Farm	95% Confidence Interval	
	Estimate Std. Error	Lower	Upper		
k_{α}/h^{-1}	0.2	8. 49081 9505	7.101960849	- 8.887052661	25.868691672
k/h-1	0.01	0.658055199	0.146747868	0. 298976103	1.017134296
V/L	0.2	2. 21 45 40 57 4	0.260447555	1.577248365	2.851832783
$t_{ m lag}$ / h	0	0.085034733	0.091256246	- 0.138261256	0.308330722

注:1) R² = 0.97275(Adjusted R² = 0.95095)。2)关闭权重。3)会聚精度:1E-8

Note: 1) $R^2 = 0.97275$ (Adjusted $R^2 = 0.95095$). 2) Weight off. 3) Convergence precision: 1E-8

表 3 SPSS依据单室模型、一级吸收过程 $(不含 t_{lag})$ 拟合的药动学参数

Tab 3 The pharmacokinetic parameters estimated by SPSS according to one-compartment model with the 1 st order absorption without t_{lag}

Param e te r	Do nome a to n	Value Estimate	Std. Error	95% Confidence Interval	
Parameter	Starting Value			Lower	Upper
k_{α}/h^{-1}	0.2	4. 96221 5864	1.282408539	1.929801532	7. 994630196
k/h^{-1}	0.01	0.719287793	0.162566276	0.334879634	1.103695952
V/L	0.2	2.053986807	0. 236749742	1.494162626	2.613810987

注:1) R² = 0.96923(Adjusted R² = 0.95384)。2)关闭权重。3)会聚精度:1E-8

Note: 1) $R^2 = 0.96923$ (Adjusted $R^2 = 0.95384$). 2) Weight off. 3) Convergence precision: 1 E-8

以表 2或表 3的结果 (Estimate)为基础,其他药动学参数的求算请参考有关文献。

2.2 两室模型、一级吸收过程的拟合

将公式 (1)输入非线性回归 ,分别按考虑和忽略 t_{lag} 项拟合表 1的数据 ,结果见表 4 ,表 5 .

以表 4或表 5的结果 (Estimate) 为基础,其他药动学参

表 4 SPSS依据两室模型、一级吸收过程 (含 t_{lap})拟合所得的药动学参数

Tab 4 The pharmacok inetic parameters estimated by SPSS according to two-compartment model with the 1 st order absorption and t_{lav}

Parameter Starting Value	Ct- win - W-lin	Estimate	Std. Error	95% Confidence Interval	
	Starting Value			Lower	Upper
A ₁ /m g• L ⁻¹	1	20.000000000	1.16410E - 12	20.000000000	20.000000000
α /h $^{\text{-}}$ $^{\text{1}}$	0.1	2.000000000	2.33671E - 14	2.000000000	2.000000000
$A_2 / m g^{\bullet} L^{-1}$	0.1	1.000000000	3.85733E - 15	1.000000000	1.000000000
β /h ⁻¹	0.01	0.100000000	4. 91 426E - 16	0.100000000	0.100000000
ka/h^{-1}	0.5	3.000000000	3.62234E - 14	3.000000000	3.000000000
$t_{ m lag}$ / h	0	0.020000000	4. 96454E - 16	0.020000000	0.020000000

注:1) R² = 1.00000(Adjusted R² = 1.00000)。2)关闭权重。3)会聚精度:1E-8

Note: 1) $R^2 = 1.00000$ (Adjusted $R^2 = 1.00000$). 2) Weight off. 3) Convergence precision: 1 E-8

表 5 SPSS依据两室模型、一级吸收过程 (不含 t_{lag})拟合所得的药动学参数

Tab 5 The pharmacokinetic parameters estimated by SPSS according to two-compartment model with the 1 st order absorption without $t_{\rm lag}$

Parameter St	Starting Value	Estimate	Std. Error	95% Confidence Interval	
	Starting value	Estimate		Lower	Upper
Al /mg• L ⁻¹	1	333.44604574	731 27. 625238	- 187647. 0991	188313.99117
α/h^{-1}	0.1	2.308961057	6. 265241 865	- 13. 79635588	18.414277990
$A2 / mg^{\bullet} L^{-1}$	0.1	0. 971 2631 05	0.078849393	0.768574287	1.173951923
β /h ⁻¹	0.01	0.096648181	0. 01 0401 006	0.069911544	0.123384818
ka /h-1	0.5	2.366340760	6.363825257	- 13.99239285	18.725074371

注:1) R² = 0.99972(Adjusted R² = 0.99937)。2)关闭权重。3)会聚精度:1E-5

Note: 1) $R^2 = 0.99972$ (Adjusted $R^2 = 0.99937$). 2) Weight off. 3) Convergence precision: 1E-5

数的计算公式为

$$\begin{split} & t_{/2}\left(\,\alpha\,\right) \, = \frac{\ln\!2}{\alpha}, \, t_{/2}\left(\,\beta\,\right) \, = \frac{\ln\!2}{\beta}, \, t_{/2}\left(\,k_{_{\!\alpha}}\,\right) \, = \frac{\ln\!2}{k_{_{\!\alpha}}} \\ & k_{21} \, = \frac{A_{_{\!1}} \, \bullet \, \beta(\,k_{_{\!\alpha}} \, - \, \alpha\,) \, + A_{_{\!2}} \, \bullet \, \alpha(\,k_{_{\!\alpha}} \, - \, \beta)}{A_{_{\!1}}\left(\,k_{_{\!\alpha}} \, - \, \alpha\,\right) \, + A_{_{\!2}}\left(\,k_{_{\!\alpha}} \, - \, \beta\right)}, \, k_{10} \, = \frac{\alpha \, \bullet \, \beta}{k_{21}}, \, k_{12} \, = \alpha \, + \beta \\ & - \, k_{21} \, - \, k_{10} \\ & V_{c} \, = \frac{F \, \bullet \, X_{_{\!0}} \, \bullet \, k_{_{\!\alpha}}\left(\,k_{21} \, - \, \alpha\,\right)}{A_{_{\!1}}\left(\,k_{_{\!\alpha}} \, - \, \alpha\,\right) \, \bullet \, \left(\,\beta \, - \, \alpha\,\right)}, \, AUC_{0 \, \to \, \infty} \, = \frac{A_{_{\!1}}}{\alpha} \, + \frac{A_{_{\!2}}}{\beta} \, - \frac{A_{_{\!1}} \, + A_{_{\!2}}}{k_{_{\!\alpha}}}, \, CL_{_{\!3}} \end{split}$$

2.3 室模型的选择

AUC₀, m

以 Adjusted R2 为指标,越大越好。

Adjusted
$$R^2 = 1 - (1 - R^2) (n - 1) / (n - m - 1)$$

n代表实验数据的个数, m 代表模型中参数的个数 (本例单室模型 m = 4,两室模型 m = 6,如不含滞后时间 t_{lag} 项则需再减 1)。

从表 2~5的结果来看,表 1的药 时数据最为符合两室模型、一级吸收过程(含 t_{loo} , Adjusted $R^2 = 1.00000$)。

2.4 达峰时间 (tm)和达峰浓度 (cm)的计算

用电脑从 0h开始,以每隔很小一段时间 (本实验为 0.01 h)为步长产生一个肯定包含 t_m 的时间等差数列 (借助 Microsoft Excel的自动填充功能可以方便地产生这一数列,然后将其复制并粘贴至 SPSS中);因本例符合两室模型 (含滞后时间),故将表 4的结果代入公式 (1)并输入 SPSS的 transfom \rightarrow compute对话框中,则可计算出对应的血药浓度,对其排序后很容易找到 $t_m=0.47h$, $c_m=3.6433 \, \mathrm{mg}^{\bullet}$ L^{-1} 。

3 讨论

3.1 3P87拟合血管外给药的数据

有考虑和忽略 t_{lag} 项两种形式,因此有文献拟合时将其忽略,这不一定合理。本实验依据 t_{lag} 的 95% CI来解决这个问题。

3.1.1 如果拟合后 t_{lag} 的 95% CI包含零 (表 2),表明从统计学的意义来说该参数的存在对模型无显著影响 (P>0.05),尽管数值 (0.0850)相对较大,仍可将它忽略,也就是将它从模型中剔除后重新拟合 (表 3)。此时,虽然 R^2 稍有下降,但Adjusted R^2 反而增大,且模型中其他参数的 95% CI均不包含零,表明拟合相对较为成功(但这不一定是最佳模型,须与其它模型的 Adjusted R^2 进行比较)。

3.1.2 如果拟合后 t_{lag} 的 95% CI不包含零 (表 4),表明该参数的引入对模型有显著影响 (P < 0.05),尽管数值 (0.02)相对较小,不应将它忽略。否则, R^2 或 Adjusted R^2 将有明显下降 (P < 0.05),甚至出现模型中其它参数的 95% CI包含零,拟合结果可能不正确,见表 5的 Std. Error和 95% Confidence Interval。

因此,依据 t_{lag} 的 95% CI,而不仅是其数值的大小来决定它能否被忽略是合理的。

3.2 95% CI的应用值

如果模型中其他参数的 95% CI包含零,说明该参数可能无意义,即现模型可能不成立,应换一个进行拟合。但最终药动学模型的确定主要应依据全局性指标 Adjusted R² 而不是局部性指标 95% CI,后者仅用于判断模型中的参数是否具有存在的价值。在实际工作中,最重要的是使所选择的药动学模型能反映药物的体内过程,而这只能由 Adjusted R²

决定。如本实验使用两室模型一级吸收过程 (不含 t_{lag} , Adjusted $R^2=0.99937$,见表 5)相对于单室模型一级吸收过程 (不含 t_{lag} , Adjusted $R^2=0.95384$,见表 3)更能描述药物的体内过程 ,尽管前者有多个参数的 95% CI包含零 ,而后者所有参数的 95% CI均不包含零。

因此,95% CI的应用价值目前主要还是利用它决定 $t_{\rm lag}$ 的弃留上。

3.3 启动值

在非线性回归中,需要给每个参数一个启动值(Starting value)。启动值首先应符合药动学常理,如应全部为正值,ka > k(单室模型), $ka < \alpha > \beta$ 等 (两室模型);其次应尽可能接近最终结果,从表 2~表 5的结果来看,SPSS的非线性回归对启动值的要求较为宽松,并不要求很接近最终结果,但偏差过大易造成拟合失败(软件有提示)或错误的拟合结果(R^2 低或绝对值大于 1、所得参数为负值等)。此时,应重新设置启动值进行拟合,直至得出较为理想的结果。

从笔者实际使用的情况来看, SPSS对启动值的要求较 3P87宽松得多,更易得到成功的拟合。

3.4 SPSS的拟合结果

从表 4的结果来看, SPSS的拟合十分准确,完全还原了原假设中指定的药动学参数,说明本法有很强的准确性;笔者还用他药拟合了其它血管外给药的实测药,时数据,所得结果与 3P87基本相符,完全可用于实际工作。

使用本方法计算 t_m 和 c_m (理论值)仅需明确药 时关系,无需再做繁琐的公式推导,且适用于各种药动学模型。所有的计算公式均可通过 Paste键保存成 SPSS Syntax Files文件,再将这些 (程序)文件分别保存于按给药途径命名 (如 "血管外给药")的文件夹中,以后就可以随时调出,专门用于分析血管外给药的药 时数据。

综上所述, SPSS拟合药 时数据所得的结果建立在统计 学的基础上,合理可靠,是分析药物体内过程的有力工具。

收稿日期:2003-10-24