• 专 栏•

• 中药与天然药•

儿童益智口服液中海参水解工艺改进研究

文君 1 ,白雪龙 2 ,刘清华 3 ,李晶 3 (1.浙江泰利森药业有限公司,浙江 嘉兴 314300;2.山西安特制药股份有限公司,山西 太原 030012;3.山西医科大学,山西 太原 030001)

摘要:目的 研究并改进儿童益智口服液中海参水解工艺。方法 采用 5 因素 4 水平 $L_{16}(4^5)$ 正交试验法,以水解度为考察指标,对影响水解的因素进行研究。结果 影响海参水解的主次因素为 B>A>D>C。优选的水解工艺条件为:加酶量(A) 1.5% 加水量(B) 20 倍、水解时间(C) 6h 水解温度(D) 50%。按此优选工艺生产,水解度达(29.2 ± 0.9)%(n=3),与原工艺所得水解度经 t 检验比较,有极显著差异(P<0.001)。结论 上述结果为儿童益智口服液中海参水解工艺的改进提供了依据。

关键词:儿童益智口服液:海参:水解工艺:正交试验

中图分类号: R286; TQ464 文献标识码:B 文章编号:1007-7693(2003)04-0280-03

A study on the improvement on hydrolysis technology of sea cucumber in Ertong Yizhi oral solution

WEN Jun¹, BAI Xue-long², LIU Qing-hua³, LI Jing³ (1. Zhejiang Tailison Pharmaceutical Co., Ltd., Jiaxing 314300, China; 2. Shanxi Ante Pharmaceutical Co., Ltd., Tai Yuan 030012, China; 3. Shan Xi Medical University, Taiyuan 030001, China)

ABSTRACT: OBJECTIVE To study and improve the hydrolysis technology of sea cucumber in Ertong Yizhi oral solution. **METHOD** The technology was studied by orthogonal experimental design with 5 factors and 4 levels (L16(45)) with the degree of hydrolysis as the detective marker. **RESULTS** The factors influencing hydrolysis of the sea cucumber were as follows: B > A > D > C. The best hydrolysis condition was: the amount of enzyme(A) 1.5%, 20 times amount of water(B), the hydrolysis time(C) 6 hours and the hydrolysis temperature(D) 50 °C. The difference degree of hydrolysis of sea cucumber is absolutely remarkable (P < 0. 001) compared with that obtained under the old technology by t-test. **CONCLUSION** The experimental results provide the basis for the improvement of hydrolysis technology of sea cucumber in Ertong Yizhi oral solution.

KEY WORDS: Errong Yizhi oral solution; sea cucumber; hydrolysis technology; orthogonal design

儿童益智口服液收载于浙江省保健药品标准[1],由海参、珍珠、太子参等七味药制备而成,具有补肾健脾、益气养血的功能。方中海参为君药,具补益作用并有增强免疫力、抗癌、抗凝血等生理活性[2]。本实验参考有关报道[3],选定加酶量 加水量、水解时间及水解温度四个因素,以水解度为指标,对本品中海参水解液的制备工艺进行正交筛选,以改进其工艺。

1 设备仪器与材料

1.1 设备仪器

H·H·S·4 型电热恒温水浴锅(上海天平仪器厂), SL25-3 电子稳速搅拌器(上海志威电器有限公司), 半微量定氮装置[4], PHS·25 型酸度计(上海伟业仪器厂)。

1.2 实验材料

干海参(海盐医药总公司、经鉴别符合浙江省中药炮制规范 1994 年增补版),木瓜蛋白酶($4000\mu/g$,浙江海宁市天仁堂保健品有限公司提供);浓硫酸、氢氧化钠、硫酸铜、硫酸钾等试剂均为分析纯。

2 实验方法

2.1 海参水解工艺以表 1 中的 A,B,C 及 D 为考察因素 ,每 个因素各取 4 个水平 ,按 $L_{16}(4^5)$ 安排实验 ,见表 2。将干海 参体内砂粒除去 ,粉碎成粗粉 ,称取处方量 10g ,加试验量水 ,室温浸泡 12h 左右至胀透 ,加入试验量的木瓜蛋白酶 ,置已调至实验温度的恒温水浴锅内 ,开搅拌器(转速 $60r/\min)$,每隔 2h 补加失去的水分 ,至实验规定时间时 ,取出 ,迅速冷至室温 ,中速滤纸过滤 ,取滤液留待分析。每个实验重复 1 次。

表 1 因素水平表

作者简介:文君(1967 -) ,男(回族) ,山西省太原市人 ,高级工程师 ,执业药师 ,主要从事药物制剂工艺及分析工作。电话:0573-6120154 , E-mail:wenjun@mail.jxptt.zj.cn

Tab 1 Level of experiment factors

因素 水平	A 加酶量 %	B 加水量(倍)	C 水解时间 h	D 水解温度 ℃
1	0.5	20	6	50
2	1.0	16	8	60
3	1 .5	12	10	70
4	2.0	8	12	80

2.2 指标测定

2.2.1 氨基酸态氮的测定

精密吸取 2.1 项下水解液 5 mL,置烧杯中,用酸度计按 经典中性甲醛滴定法[5](氢氧化钠滴定液浓度为 0.01 mol/ L) 测定,计算水解液中氨基酸态氮的量。

- 2.2.2 总氮的测定 精密吸取 2.1 项下水解液 1 mL,照半 微量氮测定法[4]测定,计算水解液中的总氮量。
- 2.2.3 水解度的计算 水解度以水解液中氨基酸态氮量与 总氮量的百分比表示(%)。

表 2 正交试验结果

Tab 2 Results of variance in orthogonal experiment

3 结果与数据处理

正交试验的各次试验结果及计算见表 2.对试验结果进 行统计学处理,方差分析结果见表3。

分析上述结果表明,各因素对海参水解影响程度依次为 B > A > D > C,最佳条件为 A,B,C,D,其中加酶量 A 和加水 量 B 对水解程度的影响具有极显著的统计学意义(P < 0.01),水解温度 D对水解也有显著影响(0.01 < P < 0.05), 而水解时间 C 的影响则不显著(P > 0.05),为缩短生产周 期,水解时间可由 C4 改为 C1,即由水解 12h 改为 6h。因此 最终优选条件组合为: A, B, C, D, 即加酶量1.5%、加水量20 倍、水解时间 6h,水解温度 50 ℃。按此组合进行生产,水解 度平均为 (29.2 ± 0.9) %(n=3),水解液经氨基酸分析仪测 定结果见表 4,含有 14 种氨基酸,游离氨基酸量 ≥0.6 mg/

试验		_	~	_			水解度 %	
号码	A	В	С	D	E		x	小计
1	1	1	1	1	1	14.50	18.17	32.67
2	1	2	2	2	2	14.56	13.59	28 .1 5
3	1	3	3	2 3	2 3 4	9.16	10.28	19.44
4	1	4	4	4	4	8 .51	7 .82	16.33
5	2	1	4 2	3	4	21 .69	22 .07	43 .76
6	2	2	1 -	4	3	14.39	17.51	31 .90
7	2	3	4	1	2	21 .78	18.40	40 .18
8	2	4	3	2	1	11 .72	11 .18	22 .90
9	3	1 1	3	4	2	21 .55	24.34	45 .89
10	3	2	4	3	1	19.90	19.69	39.59
11	3	3	1	2	4	24 .65	14.94	39 .59
12	3	4	2	1	3	17.38	14.95	32.33
13	4	1	4	2	3	28 .12	27.70	55 .82
14	4	2	3	11	4	23 .65	22.52	46 .17
15	4	3	2	4	• 1	10.03	17.89	27 .92
16	4	4	1	3	2	7 .79	10.81	18.60
K ₁	96 .59	178.14	122.76	151 .35	123.08			
K_2	138.74	145 .81	132.16	146.46	132.82		$\sum x_i = 541.24$	4
K_3	157.40	127.13	134.40	121 .39	139.49	$\Sigma x_i^2 = 10226.36$		
K_4	1 48 .51	90.16	151 .92	122.04	145.85	$C = (\sum x_i)^2 / 16 \times 2 = 9154.4$		
K_1	24 .15	44 .54	30.69	37 .84		$l_{\rm el} = 35.54$		
K_2	34.68	36 .45	33.04	36 .62		$l_{\rm e2} = 109.06$		
K_3	39 .35	31 .78	33.60	30 .35			$l_{\stackrel{\sim}{\approx}} = 144.60$)
K_4	37 .13	22.54	37 .98	30 .51				
R	15.20	22.00	7 .29	7 .49				

表 3 方差分析

Tab 3 Variable analysis

方差来源	方差 平方和 <i>l</i> i	自由度 υ	均方	F 值	显著性
A	271 .65	3	90.55	11 .90	P < 0.01
В	506.26	3	168.75	22 .17	P < 0.01
C	55 .52	3	18.51	2 .43	P > 0.05
D	93 .93	3	31 .31	4.11 0	.01 < P < 0.05
误差	144.60	19	7 .61		

 $F_{0.05}(3.19) = 3.13$ $F_{0.01}(3.19) = 5.01$

表 4 氨基酸测定结果

Tab 4 The concent of free a mino acid

名 称	含量 mg/mL	名 称	含量 mg/mL
天冬氨酸	0.1807	蛋氨酸	0.0357
苏氨酸	0 .01 02	异亮氨酸	0.0222
丝氨酸	0.0220	亮氨酸	0.0234
甘氨酸	0 .1 436	酪氨酸	0.0208
丙氨酸	0.0183	苯丙氨酸	0.0252
胱氨酸	0.0418	赖氨酸	0.0281
缬氨酸	0.0351	精氨酸	0.0097
氨基酸总量	0 .61 68		

4 讨论

- 4.1 本品原为保健药品,其标准^[1]以总氮为指标制定了海参水解工艺,按本实验方法测定,其水解度仅 $(12.6\pm0.7)\%(n=3)$,与按本实验优选条件生产的海参水解液的水解度经 t 检验比较($t=25.22>t_{0.001(4)}=8.61$),有极显著的统计学意义(P<0.001)。因此,以水解度代替总氮作为海参水解程度的控制指标更为科学合理。原标准^[1]制法项下海参水解条件中加水量宜从原来的 10 倍改为 20 倍,加酶量由 1.0% 改为 1.5% 酶解时间由 8 的 改为 6 的。
- 4.2 海参室温浸泡程度对其水解有显著影响,一定要将海参浸透。但应避免海参由于浸泡时间过长或浸泡温度过高 而变酸、影响其口味。
- 4.3 按原标准[1]工艺进行试验,发现海参浸泡时吸入的水量达 5 倍。原加水量太少,无法使海参与酶充分接触并水解。

4.4 温度提高时,酶解程度未增加,反而下降,可能是由于 木瓜蛋白酶在60~80℃时逐渐灭活所致。

参考文献

- [1] 浙江省保健药品标准[S].DB33/WS-1316-96-98(1)
- [2] 沈鸣.海参的化学成分和药理研究进展[J].中成药,2001,23 (10):758.
- [3] 熊善柏,赵山,王启明、木瓜蛋白酶在乌鸡肉蛋白质酶解中的 应用研究[J]、食品科学,2000,21(12):26.
- [4] 中国药典 2000 版一部[S].2000:附录 55.
- [5] 黄伟坤.食品分析与检验[M].北京:中国轻工业出版社, 1995.

收稿日期:2002-12-20