RP-HPLC 测定立复欣注射液的含量

陶 涛 邢贞建 郭粤霞 何广成(广州 510095 广州市胸科医院药剂科)

摘要 目的: 建立一种快速简便的反相 $_{\rm H\,PLC}$ 法测定立复欣注射液的含量,同时考察 $_{\rm 25\%}$ 立复欣注射液在 $_{\rm 5\%\,GS,\,0.\,9\%\,NS}$ 和 $_{\rm 10\%\,GNS}$ 中的稳定性。方法: 采用 $_{\rm L\,ich\,rosphe\,r\,100(\,RP^{-}8.\,5um\,\times\,\,250m\,m\,)}$ 柱,以甲醇-乙腈- $_{\rm 0.\,04M\,\,KH_2PO_4}$ 溶液($_{\rm 31.\,5^{\circ}}$ 31. 5: 37) 为流动相,流速 $_{\rm 1\,\,m\,i/m}$ in,柱温 $_{\rm 40\%\,C}$, $_{\rm 254mm}$ 紫外检测; 观察溶液的外观并用酸度计测定其 $_{\rm pH}$ 值。结果: 回收率为 $_{\rm 100.\,87\%}$, $_{\rm RSD=\,1.\,4\%\,(n=\,5)}$,在 $_{\rm 4^{\circ}}$ 1 $_{\rm 20\,\,m\,g/l}$ 范围内,峰面积对浓度呈良好的线性关系, $_{\rm r=\,0.\,99989}$; $_{\rm 25\%\,$ 下样品在输液中的 $_{\rm pH}$ 值,含量及颜色在 $_{\rm 0^{\circ}}$ 6h 内均无明显变化。结论: 本法简速,灵敏度高,准确性好; $_{\rm 25\%\,C}$ 时,6h 内样品在上述输液中稳定性好。

Determination of Rifamycin by RP-HPLC

TaoTao (TT), Xing Zhen-jian (XZJ), Guo Yue-xia (GYX), He Guang-cheng (HGC) (Dept. of pharmacy. The Chest Hospital of Guang Zhou, Guang Zhou, 510095.)

ABSTRACT OBJECTIVE: To estabilish a RP-HPLC method for assay and evaluate the stability of R ifam cy in 5% GS, 0.9% NS and 10% GNS at 25°C for 6 hours. METHOD: HPLC condition column: Lichrospher $100(RP-8, 5 \text{ um} \times 250 \text{ mm})$, the mobile phase: methanol-acetonitrile-0.04M KH₂PO (31.5: 31.5: 37), the flow rate: 1 m l/m in, the column temperature: 40° C, the wavelength of UV detection: 254 nm. The pH was determined with a pH meter. RESULTS: the average recovery, were 100.87%, RSD= 1.4% (n=5), the linear range was 4° 120mg/1, r= 0.99989. There was no significant change in pH and R ifamey concentration at 25° C for 6 hours. CONCLUSIONS: The method was simple, rapid, sensitive and accurate, suitable for the quantitation analysis of R ifamycin, and R ifamycin in 5% GS, 0.9% NS and 10% GNS can be used at 25° C for 6 hours

KEY WORDS: RP-HPLC, R ifam cy, stability

立复欣(利福霉素)注射液混配在输液中进行静脉滴注以抗结核病治疗,临床效果反映良好,但目前国内关于该药应用 HPLC 法测定的报道还没有文献记载,为此,我们在参考其同类药利福平测定[1]的基础上建立一种快速检测立复欣的 HPLC 法。

1 仪器、试剂和试样

惠普1100色谱仪、阵列检测器

旋涡混合仪, XW-80A, 上海医科大仪器厂产品。 乙腈、甲醇, 均为 HPLC 级, MERCK 公司产品。

KH₂PO₄, AR 级。

利福霉素钠标准品(SV),中国药品生物制品检定所提供应,效价: 851U/mg

立复欣, 沈阳双鼎制药厂产品, 批号: 990902.

水为注射用水。

5% GS(9907272, pH 4. 73)浙江济民制药有限公司产品 0. 9% NS(990618, pH 5. 34)广东大冢制药有限公司产品 10% GNS(9908624, pH 3. 83)浙江济民制药有限公司产

品

2 色谱条件

色谱柱: Lichrospher , RP-8.5 um × 250 mm 流动相: 甲醇-乙腈-0.04M KH₂PO₄ 溶液(31.5: 31.5:

37)

检测波长: 254 nm

进样量: 5.0 ul

柱温: 40℃

流速:1 m 1/m in

在此色谱条件下,系统适用性测试结果见表 1;色谱图见图 1.

3 流动相的选择

参考文献 $^{[1]}$ 选定 $_{0.075M\ KH_{2}PO_{4}}$ 乙腈-甲醇 $_{(1:1:1)}$ 为流动相, 结果发现在基线稳定过程中, 有较大程度的波动

(0-170 bar), 怀疑是四通比例阀中液相混合时产生瞬时结晶, 经证实, 混合流动相在 25℃ 以下静置一段时间后将产生结晶。经反复对比试验, 最后选定甲醇-乙腈-0.04M KH₂PO₄ (31.5:31.5:37)为流动相。在此条件下, 进样 5.0 ul 用流动相配制的立复欣溶液, 主峰和杂质峰能得到完全分离, 峰形良好, 且主峰保留时间适宜。见图 2。

表 1 系统适应性测试

SV	
ー 保留时间∕m in	4. 080
理论塔板数	8525
拖尾因子	0. 94

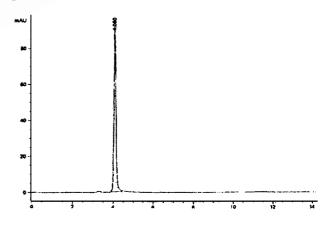
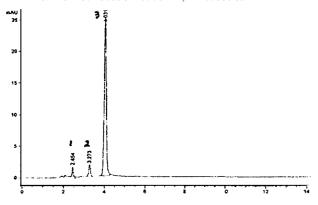


图 1 SV 标准品

4 标准曲线的测定

4.1 标准溶液的配制


精密称定 20.0mg sv 标准品,置 100 m l 容量瓶中,加流动相至刻度,旋涡混匀,即得。

4.2 方法线性测定

精密量取标准品溶液 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 6.0,

8.0 m l, 分别置于 10 m l 容量瓶中用流动相稀释至刻度, 旋涡混匀, 0.20 um 过滤, 取 5.0 ul 进样, 以主峰面积对溶液浓度作回归。结果表明, 在浓度为 $4^{-120 m g/l}$ 的范围内, 呈良好的线性关系, 其线性回归方程为:

A rea = 5413. 28739c- 6. 76422, r= 0. 99989

图 2

1,2-未知杂质 3-立复欣

5 加样回收试验

分别精取 $1.0, 3.1, 5.2 \, \text{mg}$ SV 标准品, 分别置于 $50 \, \text{ml}$ 容量瓶中, 用已知浓度为 $0.012 \, \text{mg/ml}$ 的样品溶液溶解并稀释至刻度, 测定并计算回收率。 得平均加样回收率为 100.87%, RSD 为 1.4% (100.87 ± 1.41 , 99.75%, 100.4%, 102.45%)。 (n=5)。

6 精密度试验

按上述三个浓度分别于 1 日、5 日内测定, 计算日内和日间的误差。结果见表 2。

表 2 立复欣精密度试验

浓度	日、内	3	日 间	_
(m g/m 1)	x± s	RSD	x± s	RSD
低	1. 43± 0. 063	4. 4	1. 41 ± 0. 055	3. 9
中	3.34 ± 0.12	3. 6	3. 75± 0. 097	2. 6
高	5.89± 0.068	1.2	6. 21 ± 0. 12	1.9

7 最低检测浓度

以 2 倍基线躁声衡量, 可求算得该法的最低检测浓度为 0.13 ug/m l。

8 立复欣在输液中的含量测定

精取立复欣注射液 2.0 m 1 于 50 m 1 容量瓶中, 用输液稀释至刻度, 旋涡混匀。再精取其中 3.0 m 1 置于 100 m 1 容量瓶中, 加流动相稀释至刻度, 混匀, 过滤, 进样 5.0 u 1。结果见表 3.0 m 1 3。

结果显示 25℃ 时,0~6 h 内,立复欣在上述几种输液中含量较为稳定。

9 pH 和外观变化[2]

精取立复欣 2.0 m1置于 50 m1容量瓶中, 用 25℃ 5% GS, 0.9% NS 和 10% GNS 分别稀释至刻度, 摇匀, 得临床用

药浓度。置于测定温度下, $0\sim 6$ h 内测定 pH, 并在白色背景下观察溶液外观变化。结果: 配制溶液在 6 h 内始终显橙红色, 未见明显的颜色变化; pH 值无明显变化(见表 4)。

表 3 立复欣在三种输液中不同时间的含量测定(mg/m1)

时间(h)	5% GS	0. 9% NS	10% GNS
0	55. 75	55. 75	55. 67
2	58. 58	55. 42	59. 42
4	59. 25	60.00	58. 75
6	55.17	56. 42	57. 92
$x \pm s$	57.19± 2.03	56. 90± 2.11	57. 94± 1. 63
RSD(%)	3.6	3. 7	2. 8

表 4 立复欣在三种输液中不同时间的 pH 值(25℃)

时间(h)	5% GS	0. 9% NS	10% GNS	
0	6. 30	6. 69	6. 65	
2	6. 25	6. 67	6. 61	
4	6. 20	6. 63	6. 48	
6	5. 94	6. 58	6. 23	

备注: 不加立复欣时三种输液的 pH 值分别为 4.73,3,83,5.34. 10 讨论

10.1 利福平在此条件下的图谱与立复欣极为相似, 但由于本实验缺乏利福平 N-O 化合物, 故其在图谱中的定性较困难。

10.2 由于完成一次测定(包括杂质出峰)所需时间约为 20 m in, 故在含量测定时每个时间点只测定一次, 然后求出 4 个时间点数据的 RSD, 以判断立复欣在输液中含量的变化。

10. 3 5% GS 在测定其 pH 值时, 一开始 pH 能升高至 7. 10 以上, 然后逐渐下降至某一稳定值, 若稍晃动小烧杯或稍提高电极, pH 计将以较快的频率上升至较大的 pH 值范围, 静置后以慢慢回至以前水平。其原因可能与糖分子的聚集下沉有关, 故静置一段时间后便形成了上层溶液 pH 较高而下层溶液 pH 较低的情况。因而在实验过程中应以电极插入溶液的某一深度为基准。(我们又做了 $0 \sim 4\%$, 37% 时立复欣在三种输液中 pH 的变化,发现 $0 \sim 4\%$ 时,5% GS 的变化最稳定,而 37% 时则变化最大。)

10. 4 立复欣注射液厂家提供的说明书上标明只可用 5% GS 稀释后供病人静滴, 但对于结核病合并糖尿病的病人来讲, 使用受到限制, 我们观察了立复欣在 0. 9% NS、10% GNS 输液中的稳定性, 认为该药也可用 0. 9% NS、10% GNS 稀释, 且在 0~6h 内性质稳定, 为临床提供配伍依据。

10. 5 稀释立复欣注射液, 用输液配制的保留时间比用流动相配制的保留时间大约延长 0.12 m in, 其原因可能是异相洗脱延迟.

10.6 本方法测定条件稳定,简单迅速,灵敏度高,准确性好,适用于日常的检验工作。

参考文献

庞青云、陆 岩、余 立、HPLC 测定利福平胶囊含量. 药物分折 杂志, 1997, 17(4): 256.

杨继红, 王传芳, 徐丽春, 恩丹西酮注射液与异环磷酰胺在生理 盐水中配伍的稳定性,中国医院药学杂志,1999,19(6):337.

收稿日期: 2000-11-08