哒嗪酮类药 J-894 对血小板激活时钙流动的影响

钟1(大同 037008 大同医学专科学校药理室 1100005 医学科学院基础医学研究所)

目的: 探讨 J-894 对血小板功能的影响是否与钙有关。方法: 用荧光钙离子指示剂观察 J-894 对血小板胞浆游离钙的影 响。结果: J-894 通过减少钙内流和释放明显抑制比凝血酶引起的血小板[Ca²⁺], 的升高, 剂量与效应相关。J-894 对钙内流的 抑制比对钙释放的抑制作用强。结论: 1-894 抗血小板聚集可能主要是抑制钙内流。

关键词 凝血酶; 血小板; 钙; J-894 **ABSTRACT AIM**: To find out if the effect of J-894 on platelet function is related to calcium. **METHOD**: Using quin-2 fluorescence technique. **RESULTS**: J-894 markedly inhibited the rise of $[Ca^{2+}]_i$ in platelet induced by thrombin in a dose dependent manner through decreasing both calcium influx and calcium release. The inhibition of calcium influx by J-894 is stronger than its inhibition of calcium release. **CONCLUSION**: The inhibitory effects of J-894 on platelet aggregation may be maily due to an inhibition of Ca^{2+} influx.

KEY WORDS Throm bin, Platelets, Calcium, J-894

一般认为血小板胞浆游离钙的提高是血小板活化的起始因素[1]。先前的实验证明无论体内或体外给药, J-894 均能明显抑制 ADP 或凝血酶诱导的家兔血小板聚集。为了探讨 J-894 对血小板功能的影响是否与钙有关, 本实验观察了 J-894 对凝血酶激活的血小板胞外钙内流及胞内储存钙释放的影响。

1 材料和方法

1.1 试剂

J-894 由上海第二军医大学药学系孙常晟教授提供; qu in-2, 毛地黄皂甙, DT PA, Hepes, PG I₂, 凝血酶为 S ingm a 公司产品: EGTA 由北京化学药品商店购买。

1.2 仪器

HITACHI 850 Fluoresence spectrophotometer.

1.3 方法

1. 3. 1 血小板的制备: 取健康成人血, 献血者要求在 10 天内未服过阿斯匹林和类似药物。用 ACD(枸橼酸 0.47g, 枸橼酸钠 1.33g, 葡萄糖 3g,100m 1 蒸馏水)以 1:4(ACD: 血)的比例抗凝, 离心($200\times g,10m$ in),取上清为富含血小板血浆(PRP)。在 PRP 中加入 $PGI_2(0.2\mu g/m1)$ 以防止血小板聚集, 然后用 qu $in-2(15\mu m)$ 与 PRP 在 37C 温育 30m in,将温育后的 PRP 离心($1200\times g,6m$ in) 弃上清, 在血小板团块中加适量 Hepes 缓冲液(145m m ol/L-NaCI,5m m ol/L-KCI,1m m ol/L-M $gso_4,10m$ m ol/L-Hepes,10m m ol/L-glucose,PH 为 <math>7.4)制成血小板悬液,将血小板计数调至 $1-2\times10^8/m$ 1, 再加入DTPA(0.1mm ol/L),(用于螯合非 Ca^{2+} 二价金属离子,以排

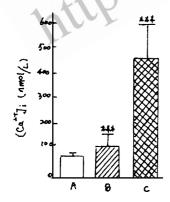


图 1 凝血酶激活血小板时[Ca^{2+}]; 变化($n=7, \overline{X}\pm s$), * * * P < 0.01 与静息血小板比, A. 静息: B. $CaCl_2$ (lm m ol/L); C. 凝血酶(0.3 μ/m 1)。

除荧光干扰), 然后置 37℃ 待测[Ca²⁺]^[2-3]。

1. 3. 2 $[Ca^{2+}]_i$ 的测定: 激发波长为 339nm,发射波长为 492nm,在 1mm ol/L 外钙的存在下,首先测定静息血小板和凝血酶激活的血小板的荧光强度(F);加入毛地黄皂甙(0.1mm ol/L) 破膜,测定 qu in-2 与 Ca^{2+} 螯合达到饱和时的荧光强度 (F_{max}) 再加入 M $nCL_2(4mm$ ol/L)(可熄灭 qu in-a 荧光)测定血小板自身的荧光强度 (F_{max}) ,经公式 2 求出血小板 $[Ca^{2+}]_i$ 。

- 2 结果
- 2.1 凝血酶激活血小板时[Ca2+]i的变化

静息血小板[Ca²⁺]_i 为 73.8±9.4 nm ol/L, 加入 CaCl₂ (lm m o/L)后, [Ca²⁺]_i 升为 121.3±32.9nm ol/L, 血小板经凝血酶激活后, [Ca²⁺]_i 增至 464.9±139.2(图1)。

2.2 凝血酶激活血小板内钙释放的测定

在无钙介质中(加入 EGTA 络和钙)测的静息血小板 $[Ca^{2+}]_i$ 为 51. 1 ± 5 . 9nm ol/L, 经凝血酶激活后, $[Ca^{2+}]_i$ 增至 73. 0 ± 8 . 2nm ol/L(图 2)。两者之差为 21. 9 ± 9 . 9nm ol/L, 此值为胞内钙的释放。

2.3 J-894 对凝血酶激活血小板时[Ca²⁺]_i的影响

与血小板在 37° 下温育 10_{m} in 的 J-894(10° , 10° , 10

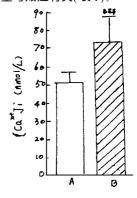


图 2 凝血酶对细胞内钙释放的影响($n=7, \overline{X}\pm s$)**
* P<0.01 与静息血小板比, A. 静息: B. 凝血酶($0.3\mu/m$ 1)。

表 1 J-894 对凝血酶激活血小板时[Ca²⁺];的影响

药物	剂量(mmol/L)	例数	$\begin{array}{ccc} [\ Ca^{2+} \]_i (\ nm \ ol/L) \\ & \overline{X} \pm \ s \end{array}$	抑制率%
对照	-	7	464. 9± 139. 2	-
J- 894	10-9	6	375.8±88.0*	19. 2
	10-8	6	292. 6± 77. 9* *	37.1
	10-7	6	246. 2± 67. 5* * *	47. 0
	10-6	6	125.8±24.9* * *	72. 9

2.4 I-894 对凝血酶激活血小板时胞内钙释放的影响

小剂量 (10^{-7}m ol/L) J-894 对凝血酶引起的血小板内钙释放无影响, 当剂量增加到 10^{-6}m ol/L 时, 明显抑制凝血酶引起的内钙释放(表 2)

表 2 1-894 对凝血酶激活血小板时胞内钙释放的影响

药物	剂量(mmol/L)	例数	[Ca ²⁺]i(nm ol√L) ————————————————————————————————————	抑制率%
对照		8	21.9±9.9	-
J- 894	10-7	4	18.4±3.1*	15.8
<u> </u>	10-6	4	9. 5± 0. 6* *	56. 6

^{*} P> 0. 05 | * * P< 0. 0

3 讨论

本实验结果表明, 加入 $CaCl_2(1mmol/L)$, $[Ca^{2+}]$, 明显增加, 这种情况下的钙内流称为基础钙漏, 因为其不依赖激动剂, 对大剂量的钙通道阻滞剂例如戊脉安不敏感。凝血酶引起血小板 $[Ca^{2+}]$, 明显增加, 这是胞外钙内流及胞内储存钙释放所引起。在胞外加入 1mmol/LEGTA 螯合胞外钙后, 钙的内流极少, 可被忽略, 因此钙的任何变化可归于内钙释放入胞浆。在外钙缺乏的情况下, 凝血酶引起血小板 $[Ca^{2+}]$, 增加程度明显下降, 这提示凝血酶使 $[Ca^{2+}]$, 增加部分是通

过内钙释放, 但主要是通过刺激钙内流。众所周知钙内流是通过电位依赖性通道调节, 由于在人体血小板缺乏有电位依赖性通道的证据, 因此, 凝血酶似乎通过膜受体激活血小板, 而引起钙内流。 J-894 以剂量依赖方式明显对抗凝血酶引起的血小板[Ca²+]。的增加, 但需要较大的剂量才能抑制内钙的释放。 本结果提示 J-894 对钙内流的抑制比对钙释放的抑制作用强。以往的研究证明钙通道阻滞剂可以抑制凝血酶引起的血小板钙内流^[4]。 J-894 对钙内流的抑制作用类似于钙通道阻滞剂。所以, 阻止钙内流可能是 J-894 抗血小板聚集的机制。此外, 有资料表明钙从血小板内储库的释放可能通过 IP3 促发^[5], J-894 对血小板肌醇磷酯代谢的作用有待于进一步研究。

参考文献

- 1 汪 钟, 于 润, 张 宏等. 哒嗪类药物 Y-909 对凝血酶诱导的 人血小板聚集和胞浆游离钙水平的影响. 中国药理学与毒理学 杂志, 1994, 8(2): 150.
- 2 肖 东, 顾振纶, 白建平等. 槲皮素对血小板聚集和胞浆游离钙的影响. 中国药理学报, 1995, 16(3): 223.
- 3 郑淑秋, 关永源, 贺 华等. 蛋白激酶 C 与血管平滑肌 α₁ 肾上腺素受体触发 Ca²⁺ 内流的关系. 中国药理学与毒理学杂志, 1995, 9(3): 203.
- 4 Pales J, palacios-Araus L, Lopez A, Gual Effects of dihydropyridines and inotganic calcium blockers on agg regation and of intracellular free calcinm in platelets Biochim Biophys Ac tal 991; 1064: 169.
- 5 Knezevic I, Dieter JP, Le, Breton GC. Mechanisb of inositol 1, 4, 5-trisphosphate-induced aggregation in saponinpermeabilized platelets. J Pharm acol Exp Ther 1992; 260: 947.

收稿日期: 1999- 12- 07