紫外分光光度法测定维生素 B, 片含量

周海燕 朱晓玲! 蔡纪青²(丽水 323000 浙江省丽水市药品检验所; 庆元 323800 庆元县人民医院; 丽水 323000 丽水市中医院)

维生素 B_4 原料及片剂均收载于卫生部药品标准中,含量测定一直采用凯氏定氮法,该方法较为繁琐费时。维生素 B_4 在紫外区有吸收,且已用于原料药的鉴别,但尚未见用于测定片剂含量的报道。我们试用紫外分光光度法测定维生素 B_4 片的含量,方法简便、可靠。

1 仪器、试剂与药品

UV- 265 紫外分光光度计(日本岛津),维生素 B_4 对照品 (浙江海正药业有限公司生产,经重结晶处理后,凯氏定氮法 测得含量为 99.5%),维生素 B_4 片(浙南药业有限公司),盐 酸及其它试剂均为分析纯。

2 实验方法与结果

2.1 方法 取维生素 B_4 对照品 ,用0.02 mol/ L 盐酸溶液制成浓度约为 $10\mu g/$ ml 的溶液 ,以0.02 mol/ L 盐酸溶液为空白 ,在 $200 \sim 300$ nm 的波长范围内扫描 ,在 262 ± 1 nm 的波长处有最大吸收 ,与标准规定一致。另取维生素 B_4 片处方量的各辅料适量 ,用0.02 mol/ L 盐酸溶液制成空白对照溶液 ,在 $200 \sim 300$ nm 的波长范围内扫描 ,结果表明辅料仅在末尾段有少量吸收 ,而在 262 nm 附近没有吸收 ,故将 262 ± 1 nm 波长作为测定波长(见图 1)。

1 - 维生素 B4,2 - 辅料

图 1 维生素 B₄ 及辅料吸收图谱

2.2 线性关系 精密称取维生素 B_4 对照品约 $20\,mg$,置 $100\,ml$ 容量瓶中,加 $0.02\,mol/L$ 盐酸溶液使维生素 B_4 溶解 ,并 加至刻度 ,摇匀。精密吸取上述溶液 $1..2..3..4..5\,ml$,分别置 $50\,ml$ 量瓶中 ,加 $0.02\,mol/L$ 盐酸溶液稀释至刻度 ,摇匀 ,以 $0.02\,mol/L$ 盐酸溶液为空白 ,求得回归方程为 :Y=17.470 A-0.1845 ,r=0.9999。结果表明维生素 B_4 浓度 $4\sim20\,\mu g/ml$ 范围 内与吸收度呈良好的线性关系。

2.3 回收率试验 精密称取 $105\,^\circ$ C 干燥恒重的维生素 B_4 对照品约 $50\,\mathrm{mg}$ 共 $5\,^\circ$ 份,置 $100\,\mathrm{ml}$ 量瓶中,分别加入处方量的各辅料,制成模拟维生素 B_4 片,加 $0.02\,\mathrm{mol}/L$ 盐酸溶液适量,振摇使维生素 B_4 溶解,加 $0.02\,\mathrm{mol}/L$ 盐酸溶液至刻度,摇匀,滤过,弃去初滤液,精密量取续滤液 $2\,\mathrm{ml}$,置 $100\,\mathrm{ml}$ 量瓶中,加 $0.02\,\mathrm{mol}/L$ 盐酸溶液至刻度,摇匀,在 $262\,^\pm$ 1 nm 的波长测定吸收度(A),根据回归方程求出浓度并计算回收率,结果见表 $1.60\,^\circ$ 0.02 mol/,根据回归方程求出浓度并计算回收率,结果见表 $1.60\,^\circ$ 0.02 mol/,是

表 1 回收率试验

++ -	投入量	测得量	回收率	平均回	DCD/ 0/
样品	/ mg	/ mg	/ %	收率/%	RSD/ %
1	65 .50	65 .57	100 .1		
2	49 .50	49 .50	100.0		
3	49 .40	49 .23	99 .7	100 .1	0.40
4	56 .70	57 .18	100.8		
5	49 .20	49 .23	100.1		

2.4 稳定性试验 取上述测定溶液,在室温避光情况下放置 4h,每隔1h测定1次,吸收度基本不变。

2.5 样品的测定 取维生素 B_4 片 20 片,精密称定,研细,精密称取适量(约相当于维生素 B_4 20 mg),置100 ml 量瓶中,同时精密称取经105 ℃干燥至恒重的维生素 B_4 对照品约 50 mg,置100 ml 量瓶中,分别加0.02 mol/L 盐酸溶液使溶解,照回收率试验项下的方法测定吸收度(A),根据两者的比值计算出相当于维生素 B_4 标示量的百分含量。同时与凯氏定氮法测得的结果比较,结果见表 2。

表 2 样品含量测定/标示量 %

批号	紫外分光光度法	凯氏定氮法
971 022	91 .8	92 .3
980703	91 .9	91 .4
990604	91 .2	91 .5
990706	95 .2	94 .8
990804	91 .8	91 .9
990805	94.2	94 .3

2.6 重复性试验 取同一批样品,按"样品测定"项下取样 5 份,进行测定。结果平均含量为 94.3 %, RSD = 0.20 % (n = 5)。

3 小 结

从以上结果可知,用紫外分光光度法测定维生素 B₄ 片的含量,与用凯氏定氮法测得的结果基本一致,但与费时费事的凯氏定氮法比较,紫外分光光度法具有仪器要求简单、操作简便、快速的优点,可以推广使用。

收稿日期:1999-12-23