替硝唑洗液的稳定性试验

杨国浓 张彩霞 李云芬¹(杭州 310022 浙江省肿瘤医院 : 杭州 310006 浙江省医药有限公司)

替硝唑(Tinida zole,TNZ)是继甲硝唑后研制的硝基咪唑类抗厌氧菌及抗原虫药,为甲硝唑同系物。为满足临床需要,自制替硝唑洗液。本文采用经典恒温加速法对其稳定性进行研究,以预测其有效期限,确保该制剂的有效性和安全性。

1 仪器与试药

UV-2401 PC 型紫外分光光度计(日本岛津),电热恒温水浴锅(江苏省医疗器械厂),替硝唑(浙江可立思安制药公司,批号:960117,0.02 %g/ml),替硝唑洗液(自制)。

2 实验方法与结果

2.1 紫外吸收光谱的测定

按文献[1],精密称取替硝唑适量,用水制成10 mg/L 溶液,在200~350nm 波长范围内扫描,在317nm 处有最大吸收波长,故选波长317nm 为测定波长。

2.2 标准曲线的制作

表 1 替硝唑洗液加速试验含量变化

精密称取替硝唑 0.0215g 溶于 $100 \, \mathrm{ml}$ 量瓶中,用蒸馏水稀释至刻度,分别量取 1.0,2.0,3.0,4.0 和 $5.0 \, \mathrm{ml}$ 于 $50 \, \mathrm{ml}$ 量瓶中,稀释至刻度,在波长 $317 \, \mathrm{nm}$ 处测定吸收度,结果显示浓度在 $4.3 \sim 21.50 \, \mathrm{mg/L}$ 内与吸收度呈良好线性关系。工作曲线方程为: $c=0.8929+28.6977 \, A$, r=0.9999。

2.3 替唑硝唑洗液含量测定

精取洗液 5 ml 于 100 ml 量瓶中,用蒸馏水稀释至刻度,按分光光度法于 317 nm 处测吸收度,由工作曲线方程计算其含量,平均回收率为 99.8%, RSD 为 0.69%

2.4 稳定性试验

按经典恒温法[2]: 将洗液分别置于 65,70,75 和 80 °C恒温锅内,定时取样,迅速冷却,按"含量测定"项下测定含量,结果见表 1。

65 ℃				70 ℃		75 ℃			80 ℃		
t(h)	浓度(cmg.(-1)	lgc	t(h)	浓度(cmg.(-1)	lgc	t(h)	浓度(cmg.(- 1)	1gc	t(h)	浓度(cmg.(- 1)	lgc
0	9 .820	0 .9921	0	9 .820	0 .9921	0	9 .820	0 .9921	0	9 .820	0 .9921
16	9 .61 8	0 .9831	16	9 .436	0 .9478	16	9 .238	0.9656	16	8 .810	0.9450
24	9 .493	0 .9774	24	9 .262	0 .9667	24	8 .925	0.9506	24	8 .371	0.9228
32	9 .445	0 .9752	32	9.116	0 .9598	32	8 .630	0.9360	32	7 .965	0.9012
40	9 .31 5	0 .9692	40	8 .921	0.9504	40	8 .366	0.9225	40	7 .605	0.8811
48	9 .238	0 .9656	48	8 .774	0 .9432	48	8 .102	0.9086	48	7 .190	0.8567

同 lgc 与加热时间 t 按最小二乘法进行回归求出各

温度回归方程、相关系数及斜率 B,并由 K=2.303 × B

计算出各温度的反应速度常数 K,结果见表 2。

表 2 各试验温度下的反应速度常数

t(°C)	T(K)	1/T×103	回归方程	k(h·1) lgk
65	338 .2	2 .957	1gc = 0.9918 - 0.00055295t $r = -0.9918$	9968 1 .273 × 10 ^{- 3} - 2 .895
70	343.2	2 .91 4	lgc = 0.9916 - 0.001017t $r = -0.9$	9994 2.342×10 ⁻³ - 2.630
75	348.2	2 .872	lgc = 0.9926 - 0.001751t $r = -0.9$	9998 4 .033 × 10 ^{- 3} - 2 .394
80	353 .2	2 .831	lgc = 0.9909 - 0.002790t $r = -0.9$	9997 6.425×10^{-3} 2.192

由 Arrhenius 指数定律 lgk = laA - E/(2.303 TR),以各温度 lgk 与相对应 1/T 进行回归,得回归方程为 :lgk = 13.64 - 5586 $\frac{1}{T}$,r = -0.9988。由回归主程求得室温 25 ℃时的分解速度常数 $K^{25 \ C} = 8.084 \times 10^{-6}$,由 $t_{0.9} = 0.1054/K$ 计算出 $t_{0.9}^{25 \ C} = 1.51$ 年。

3 讨论

在稳定性试验中,还随时观察洗液的色泽和澄明度,均无明显变化。实验结果可见,替硝唑洗液分解速度与温度有关,所以应存放于阴凉处。

经典恒温法对替硝唑洗液稳定性试验表明,替硝唑洗液室温贮存期为一年半。

参考文献

- 1 李力更,王丽萍,封淑华.紫外分光光度法测定替硝唑注射 液含量.中国医院药学杂志,1997,17(5):220
- 2 庞贻慧,鲁纯素,药物稳定性预测方法.北京:人民卫生出版社,1984:35.

收稿日期:1998-04-01