一测多评法测定复方人参片中的8种苷类成分

张初瑜1,陈素红2,吴素香1*

(1.浙江中医药大学药学院,杭州 310053;2.浙江工业大学,杭州 310014)

摘要:目的 建立一测多评法(quantitative analysis single-marker,QAMS)测定复方人参片中8种苷类成分的含量。方法 采用Agilent XDB-C18色谱柱(4.6 mm×250 mm,5 µm),流动相水(A)-乙腈(B),梯度洗脱;体积流量1.0 mL·min-1;检测波长203 nm;柱温:25 ℃。以人参皂苷Rb1为内标,计算人参皂苷Rg1、人参皂苷Re、淫羊藿苷、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rb3、人参皂苷Rd的相对校正因子,测定其含量。结果 8种成分在各自范围内线性关系良好(r≥0.999 0),加样回收率为95.6%~104.4%,RSD为1.22%~2.73%,QAMS测定结果与外标法测定结果无显著性差异。结论 该法准确度、灵敏度高、专属性好、操作简单、重复性好。

关键词:高效液相色谱法;苷类;复方人参片;一测多评

复方人参片由人参、淫羊藿等5味中药组成,人参具有大补元气、复脉固脱、补脾益肺、生津养血、安神益智的功能[1],淫羊藿具有补肾阳、强筋骨、祛风湿的功能。复方人参片具有益气、养阴、生津的功效。处方中的人参具有增强免疫、降血糖、减脂、抗衰老、抗疲劳、抗肿瘤等药理作用,人参皂苷是人参发挥药理作用的主要活性成分,而人参皂苷化学结构的多样性是其药理活性多态性的基础[2]。现已发现人参皂苷150多种,主要有人参皂苷Rg1、Rb1、Rc、Rd、Re、Rf、Rg2、Rb3[3]。淫羊藿具有抗骨质疏松、改善认知、保护心血管、抗肿瘤、抗炎等作用,淫羊藿苷是淫羊藿发挥药理作用的主要活性成分[4]

含量测定所需对照品稀缺且昂贵,是定量分析中的常见问题,而中成药化学成分的复杂性决定其多成分同时测定作为质控标准更科学、合理。一测多评法(quantitative analysis single-marker,QAMS)是利用待测组分间具有相似的极性、吸收光谱和光谱特性,建立针对各待测组分色谱峰曲线的相对校正因子(relative correct factors,RCF),以减少对照品的使用[5]。Wang等[6]采用QAMS同时测定三七中的人参皂苷Rg1、Rb1、Rg2、Rh1、Rf、Re;三七皂苷R1、R4、Fa、F;Andrey等[7]采用QAMS同时测定人参皂苷Rb1、Rb2、Rb3、Re、Rd、Rg1、Rf、Rg2、Rg3、Rh1、Rh2、R1、CK。但人参复方制剂苷类成分的QAMS相关报道较少,检测成分也较少[8-9]。本实验选用人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd及淫羊藿苷作为复方人参片的质量控制指标,建立QAMS测定8种苷类成分的含量,并与外标法(External standard methed,ESM)测定结果进行比较。

1 仪器与试剂

Agilent 1200高效液相色谱仪(美国Agilent公司,包括G1311A四元泵、G1322A在线脱气机、G1329A自动进样器、G1316A柱温箱);Agilent Chemstation色谱工作站;KQ-500DE型数控超声波清洗器(昆山市超声仪器有限公司);Millipore超纯水系统(美国Millipore 公司)。

复方人参片(批号:20160915-1;20160915-2;20160915-3)自制。对照品:人参皂苷Rb2(批号:P09M8F35575;纯度≥98%);人参皂苷Rb3(批号:Z25N7X25518;纯度≥97%)、人参皂苷Rc(批号:P24F8F30057;纯度≥98%)、人参皂苷Rg1(批号:Z26S7X21730;纯度≥98%)、人参皂苷Rb1(批号:Z06M8L30693;纯度≥98%)和淫羊藿苷(批号:T09N6B5664;纯度≥98%)均由上海源叶所提供。人参皂苷Re(中国食品药品检定研究院,批号:110754-201525;纯度:97.4)。人参皂苷Rd(昆明风山渐医药研究有限公司,批号:06031810;纯度≥98%);乙腈为色谱纯,其他试剂为分析纯,水为超纯水。

2 方法与结果

2.1 色谱条件与系统适用性试验

以十八烷基硅烷键合硅胶为填充剂;流动相为乙腈(A)-水(B);梯度洗脱程序(0~20 min,20%A;20~30 min,20%→25%;30~40 min,25%→21 %;40~45 min,21 %A;45~70 min,21%→35%A;70~ 75 min,35%A;75~85 min,35%→45%A;85~95 min,45%→60%A;95~100 min,60%A);检测波长203 nm;理论板数按人参皂苷Rb1峰计算应≥6 000。流速1.0 min·mL-1;柱温25 ℃。色谱图见图1。

2.2 对照品溶液的制备

精密称取人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷对照品,加甲醇制成每1 mL分别含1.426,4.286,2.926,1.572,0.86,0.866,0.674,0.614 mg的混合溶液,摇匀,即得。

2.3 供试品溶液的制备

将复方人参片研细,取粉末约5 g,精密称定,置于索氏提取器中,加石油醚加热回流5 h,弃去石油醚液,药渣挥干溶剂,连同滤纸筒移入150 mL具塞锥形瓶中,加入水饱和正丁醇50 mL,密塞,放置过夜,超声处理(功率500 W,频率40 khz)1 h,滤过,滤液置蒸发皿中蒸干,残渣加甲醇溶解并转移至5 mL量瓶中,加甲醇稀释至刻度,摇匀,滤过,取续滤液,即得。

width=432,height=93.75

图1 高效液相色谱图

A-对照品;B-供试品;1-人参皂苷Rg1;2-人参皂苷Re;3-淫羊藿苷;4-人参皂苷Rb1;5-人参皂苷Rc;6-人参皂苷Rb2;7-人参皂苷Rb3;8-人参皂苷Rd。

Fig. 1 HPLC chromatograms

-standara solution; B-sample solution; 1-ginsenoside Rg1; 2-ginsenoside Re; 3-icarrin; 4-ginsenoside Rb1; 5-ginsenoside Rc; 6-ginsenoside Rb2; 7-ginsenoside Rb3; 8-ginsenoside Rd.

2.4 方法学考察

2.4.1 线性关系考察 将混合对照品溶液依次稀释1,2,4,8,10倍,精密吸取混合对照溶液及稀释液各10 µL注入高效液相色谱仪测定。以对照品进样量(mg)为横坐标(X),峰面积为纵坐标(Y),用最小二乘法进行线性回归,得到各个成分的回归方程、线性范围。结果表明,8个成分都具有良好的线性关系,结果见表1。

2.4.2 仪器精密度试验 取同一供试品溶液,按“2.1”项下色谱条件重复进样6次,测得人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷峰面积RSD值分别为0.86%,0.99%,0.69%,2.34%,2.79%,2.89%,1.17%,2.99%。表明仪器精密度良好。

表1 复方人参片中8种成分的标准曲线、线性范围

Tab. 1 The standard’s calibration curves, linear range of eight components in Compound Ginseng tablets

成分标准曲线线性范围/µgr Rg1Y=6 455.2X-134.881.426~28.5200.999 1 ReY=5 059.6 X+311.014.286~64.2900.999 3 淫羊藿苷Y=30 710X+726.10.614~12.2800.999 7 Rb1Y=4 032.3X+53.6182.926~58.5200.999 8 RcY=4 699.2X+24.1581.572~31.4400.999 0 Rb2Y=4 840.5X+2.547 70.860~17.2000.999 8 Rb3Y=4 904X+2.249 80.866~17.3200.999 8 RdY=4 483.7X+24.1920.674~13.4800.999 5

2.4.3 稳定性试验 取同一份供试品溶液,按“2.1”项下色谱条件分别在0,2,4,8,12,24 h进样,测定人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷峰面积,计算其RSD分别为1.17%,1.83%,1.84%,2.78%,2.53%,2.51%,1.72%,1.95%。表明供试品溶液在24 h内稳定性良好。

2.4.4 重复性试验 按“2.3”项下方法平行制备供试品6份,测定,人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷的平均含量分别为1.155 2,3.916 9,6.007 9,1.863 3,0.734 9,0.665 7,2.647 0,0.187 6 μg·g-1;RSD分别为4.16%,2.19%,1.52%,2.62%,1.95%,2.00%,2.12%,2.46%。该方法重复性良好。

2.4.5 加样回收率 精密称取已知含量的复方人参片样品6份,分别精密加入混合对照品溶液适量,按供试品溶液的制备方法制备并测定,计算加样回收率及RSD。结果见表2。

表2 加样回收率试验结果(n=6)

Tab. 2 Results of recovery test(n=6)

成分取样量/g原有量/µg加入量/µg测的量/µg平均回收率/%RSD/% Rg12.321 40.492 90.071 30.564 2103.312.73 Re2.321 41.332 70.214 31.547 0104.362.06 淫羊藿苷2.321 40.051 10.030 70.081 8103.031.55 Rb12.321 42.451 20.146 32.597 5103.531.37 Rc2.321 41.144 70.078 61.223 3102.351.31 Rb22.321 40.340 60.043 00.383 6 95.601.22 Rb32.321 40.261 20.043 30.304 5 96.562.51 Rd2.321 41.003 70.033 71.037 4103.931.83

2.5 校正因子重现性考察

2.5.1 校正因子的计算法 按线性关系考察项下的试验方法,通过公式f=fi/fs=(Ai/ci)/(As/Cs)[Ai为待测成分的峰面积,Ci为待测成分的浓度(µg·µL-1);As为内参物s的峰面积,Cs为内参物s的浓度(µg·µL-1)],分别计算人参皂苷Rg1、Rb1为内参物时,其他成分的相对校正因子,并将结果进行比较。结果表明,人参皂苷Rb1为内参物比人参皂苷Rg1为内参物重复性高,结果见表3。因此,本试验选用人参皂苷Rb1为内参物。

2.5.2 待测色谱峰的定位 在一测多评的运用中,能否在不同色谱体系中对待测组分的色谱峰进行准确定位是关键。目前常用的色谱峰定位方法有相对保留值法、保留时间差、时间校正法、对照提取物法等。本试验发现用保留时间差定位人参皂苷Rg1、Re、淫羊藿苷峰,相对保留值法定位人参皂苷Rb1、Rc、Rb2、Rb3、Rd峰,其待测成分相对保留时间与理论相对保留值的相对标准偏差值小,因此采用二者相结合的方法同时定位峰,结果见表4。

表3 人参皂苷Rg1、Rb1作为内参物相对校正因子的测定结果比较

Tab. 3 Comparison of RCFs used ginsenoside Rg1, Rb1 as the internal reference substance

进样体积/µL人参皂苷Rg1人参皂苷Rb1 ƒRe/sƒicarrin/sƒRb1/sƒRc/sƒRb2/sƒRb3/sƒRd/sƒRg1/sƒRe/sƒicarrin/sƒRc/sƒRb2/sƒRb3/sƒRd/s 10.916 58.240 20.696 70.803 40.812 20.825 40.784 41.435 31.315 511.827 61.153 11.165 81.184 81.125 9 20.913 97.212 40.695 60.801 70.817 60.827 10.776 61.437 51.313 810.368 11.154 01.175 41.189 01.116 3 40.910 66.050 50.692 80.799 60.815 80.817 90.777 21.443 31.314 38.732 81.155 51.177 51.180 51.121 7 60.905 85.893 30.692 60.800 20.816 00.829 50.777 01.443 91.307 98.509 31.162 31.178 21.197 61.121 9 80.904 15.666 90.690 70.802 80.817 30.830 10.779 41.447 81.309 08.204 71.166 01.183 21.201 81.128 4 100.860 05.471 70.658 60.767 90.782 20.793 20.745 71.518 41.305 88.308 21.162 31.187 71.204 41.132 2 150.798 55.016 80.631 20.733 70.750 30.759 30.715 61.584 21.265 17.947 81.164 11.188 71.202 91.133 6 200.798 44.971 40.633 80.737 80.761 00.770 90.699 21.577 81.259 77.844 01.159 61.200 81.216 41.103 2 均值0.876 06.065 40.674 00.780 90.796 60.806 70.756 01.486 01.298 98.967 81.159 61.182 21.197 21.122 9 RSD/%5.450 818.572 44.213 43.870 73.511 43.527 94.297 34.338 71.756 715.614 50.430 20.888 80.985 40.874 1

表4 人参皂苷Rb1作为内参物时相对保留值与保留时间差的测定结果

Tab. 4 The results of retention time and relative relention value used ginsenoside Rb1 as the internal reference substance

进样体积/µL保留时间差/min相对保留值 ΔtRRG1/Rb1ΔtRRe/Rb1ΔtRicarrin/Rb1ΔtRRc/Rb1ΔtRRb2/Rb1ΔtRRb3/Rb1ΔtRRd/Rb1rRg1/Rb1rRe/Rb1ricarrin/Rb1rRc/Rb1rRb2/Rb1rRb3/Rb1rRd/Rb1 1-41.831 0-40.943 0-13.434 01.470 03.008 03.490 06.478 00.394 40.407 30.805 51.021 31.043 51.050 51.093 8 2-41.860 0-40.967 0-13.533 01.469 03.004 03.479 06.486 00.394 20.407 10.804 11.021 31.043 51.050 31.093 9 4-42.037 6-41.103 0-13.649 01.450 02.985 03.462 06.467 00.392 10.405 60.802 61.021 01.043 21.050 11.093 5 6-41.966 0-41.037 0-13.542 01.435 02.918 03.392 06.386 00.394 00.407 40.804 41.020 71.042 11.049 01.092 2 8-42.600 0-41.574 0-14.001 01.419 02.928 03.414 06.420 00.384 80.399 60.797 81.020 51.042 31.049 31.092 7 10-42.611 0-41.598 0-14.405 01.469 03.018 03.515 06.480 00.382 80.397 40.791 31.021 31.043 71.050 91.093 9 15-42.653 0-41.611 0-14.388 01.408 02.904 03.404 06.404 00.384 60.399 60.792 41.020 31.041 91.049 11.092 4 20-41.904 0-40.970 0-13.404 01.493 03.283 03.777 06.791 00.393 10.406 60.805 91.026 01.047 61.054 71.098 4 均值-42.182 8-41.225 4-13.794 51.451 63.006 03.491 66.489 00.390 00.403 80.800 51.021 61.043 51.050 51.093 9 RSD/%-0.874 4-0.751 2-3.005 71.999 94.006 93.535 21.970 91.282 31.039 80.738 00.180 00.173 30.175 00.179 5

保留时间差法:待测组分(i)与内参物(s)间保留时间的差值,计算公式:ΔtRi/s=tRi-tRs

相对保留值:待测组分(i)与内参物(s)间保留时间的比值,计算公式:ri/s=ri/rs

2.6 色谱系统的耐用性评价

2.6.1 柱温对相对校正因子、保留时间差及相对保留值的影响 按“2.1”项下色谱条件分别在25,30,35,40 ℃的柱温条件下检测各待测成分的相对校正因子、保留时间差及相对保留值,结果见表5~6。

2.6.2 流速对相对校正因子、保留时间差及相对保留值的影响 按“2.1”项下色谱条件,分别在0.7,0.8,0.9,1.1 min·mL-1流速条件下检测各待测成分的相对校正因子、保留时间差及相对保留值,结果见表7~8。

表5 不同柱温下的相对保留值和保留时间差

Tab. 5 Differences in retention time and relative relention value determined on different column temperature

柱温/℃相对保留时间/min相对保留值 ΔtRRg1/Rb1ΔtRRe/Rb1ΔtRicarrin/Rb1ΔtRRc/Rb1ΔtRRb2/Rb1ΔtRRb3/Rb1ΔtRRd/Rb1rRg1/Rb1rRe/Rb1ricarrin/Rb1rRc/Rb1rRb2/Rb1rRb3/Rb1rRd/Rb1 25-41.261 0-40.467 9-12.134 51.503 02.982 03.462 06.690 00.394 20.407 10.804 11.021 31.043 51.189 01.118 9 30-42.050 0-41.299 8-15.144 41.542 01.050 31.093 96.969 00.394 00.404 90.781 71.022 21.044 61.051 41.100 4 35-42.892 0-42.293 5-18.553 81.634 03.252 03.737 07.520 00.382 50.391 10.732 91.023 51.046 81.053 81.108 3 40-42.226 0-41.828 7-19.598 11.644 03.243 03.693 67.585 00.394 50.400 20.719 01.023 61.046 51.053 01.108 8 均值-42.107 3-41.472 5-16.357 71.580 83.143 83.614 77.191 00.391 30.400 80.759 41.022 71.045 41.052 11.102 9 RSD/%-1.593 7-1888 4-20.770 54.380 24.099 33.458 06.028 31.500 21.769 75.283 50.107 90.150 30.149 60.643 7

表6 不同柱温下的相对校正因子

Tab. 6 RCFSdetermined on different columns temperature

温度/℃相对校正因子 ƒRe/Rb1ƒRg1/Rb1ƒicarrin/Rb1ƒRc/Rb1ƒRb2/Rb1ƒRb3/Rb1ƒRd/Rb1 251.313 81.437 510.368 11.154 01.175 41.189 01.118 9 301.317 51.365 210.389 81.155 81.187 31.184 81.115 5 351.333 31.333 39.721 81.156 31.189 21.173 91.126 5 401.439 51.285 510.072 71.160 41.181 81.198 41.122 1 均值1.351 01.349 910.122 81.156 81.184 01.186 41.120 9 RSD/%4.410 53.021 13.091 70.233 70.523 90.856 20.418 0

2.6.3 高效液相色谱仪、色谱柱对相对校正因子、保留时间差及相对保留值的影响 按“2.1”项下色谱条件,分别检测各待测成分在两台不同安捷伦1200高效液相色谱仪及4根不同色谱柱Agilent XDB-C18(4.6 mm×250 mm,5 µm)、Agilent SB-C18(4.6 mm×250 mm,5 µm)、Welch XDB-C18 (4.6 mm×250 mm,5 µm)、Hypersil ODS-SP (4.6 mm×250 mm,5 µm)的相对校正因子、保留时间差及相对保留值,结果见9~10。

表7 不同流速下的相对保留值和保留时间

Tab. 7 Differences in retention time and relative relention value determined on different velocity of flow

流速/min·mL-1保留时间差/min相对保留值 ΔtRRg1/Rb1ΔtRRe/Rb1ΔtRicarrin/Rb1ΔtRRc/Rb1ΔtRRb2/Rb1ΔtRRb3/Rb1ΔtRRd/Rb1rRg1/Rb1rRe/Rb1ricarrin/Rb1rRc/Rb1rRb2/Rb1rRb3/Rb1rRd/Rb1 1.1-44.659 0-43.215 0-18.037 01.444 02.976 03.466 06.537 00.342 00.363 30.734 21.021 31.043 81.051 11.090 4 1.0-42.611 0-41.598 0-14.405 01.469 03.018 03.515 06.480 00.394 20.407 10.804 11.021 31.043 51.050 31.093 9 0.9-41.261 0-40.467 0-12.134 01.463 02.982 03.462 06.620 00.409 50.420 90.826 41.020 91.042 71.049 51.094 7 0.8-42.438 0-41.435 0-13.932 01.448 02.983 03.469 06.355 00.420 60.398 60.797 81.021 01.043 31.050 41.092 2 0.7-43.176 0-41.167 0-11.596 01.454 02.983 03.504 06.874 00.417 90.438 30.867 51.020 11.041 21.048 41.108 7 均值-42.829 0-41.576 4-14.020 81.455 62.988 43.483 26.573 20.396 80.405 60.806 01.020 91.042 91.049 91.096 0 RSD/%-2.890 0-2.436 2-18.087 40.711 60.562 20.701 92.948 88.148 66.914 46.022 30.048 20.099 00.098 20.666 1

表8 不同流速下的校正因子

Tab. 8 RCFs determined on different velocity of flow

流速/min·mL-1校正因子 ƒRe/Rb1ƒicarrin/Rb1ƒRc/Rb1ƒRb2/Rb1ƒRb3/Rb1ƒRd/Rb1ƒRg1/Rb1 1.11.324 79.821 00.624 51.186 11.197 71.197 71.429 0 1.01.313 810.368 11.154 01.175 41.189 01.189 01.437 5 0.91.310 711.045 60.620 51.175 41.194 81.119 31.436 0 0.81.316 67.351 50.621 61.174 21.190 51.120 41.436 0 0.71.323 811.187 10.636 11.122 11.186 31.117 41.483 8 均值1.317 99.954 70.731 31.166 61.191 71.148 81.444 5 RSD/%0.466 815.622 632.318 12.174 00.383 43.554 71.539 6

2.7 QAMS和ESM测定结果比较

按“2.1”项下色谱条件,分别采用QAMS和ESM对复方人参片的待测成分进行定位,测定,比较,结果见表11。

ESM测定人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷含量的实测值,与QAMS计算值比较,经t检验,P值均>0.05,表明QAMS与ESM测定的结果无显著性差异;QAMS与ESM进行定位,并经t检验,结果发现除淫羊藿苷和人参皂苷Rd外,其他成分P>0.05。结果见表11。

表9 不同高效液相色谱仪、色谱柱下的校正因子

Tab. 9 RCFs determined on different HPLC instruments and columns

色谱柱仪器一仪器二 ƒRe/Rb1ƒicarrin/Rb1ƒRc/Rb1ƒRb2/Rb1ƒRb3/Rb1ƒRd/Rb1ƒRg1/Rb1ƒRe/Rb1ƒicarrin/Rb1ƒRc/Rb1ƒRb2/Rb1ƒRb3/Rb1ƒRd/Rb1ƒRg1/Rb1 柱一1.313 810.985 81.021 31.175 41.189 01.118 91.437 51.305 4 9.441 91.170 71.200 91.206 31.139 81.326 5 柱二1.306611.190 11.020 61.172 11.201 61.112 91.356 41.306 611.060 31.160 71.161 61.171 71.121 21.345 6 柱三1.314 011.124 61.022 11.174 41.181 51.115 71.408 0 1.283 811.187 11.165 61.186 31.217 51.127 61.323 9 柱四1.309 310.853 61.020 71.171 91.184 81.114 71.372 91.307 310.754 11.160 21.173 51.169 71.117 31.372 9 均值1.310 911.038 51.021 21.173 51.189 21.115 61.393 71.300 810.610 91.164 31.180 61.191 31.126 51.342 2 ESD/%0.275 31.357 30.067 60.147 00.740 20.225 52.602 50.872 17.541 50.422 01.430 82.034 40.874 01.685 5

表10 不同高效液相色谱仪、色谱柱下的相对保留值和保留时间差

Tab. 10 Differences in retention time and relative relention value determined on different HPLC instrumentsand columns

色谱柱保留时间差相对保留值 ΔtRRg1/Rb1ΔtRRe/Rb1ΔtRicarrin/Rb1ΔtRRc/Rb1ΔtRRb2/Rb1ΔtRRb3/Rb1ΔtRRd/Rb1rRg1/Rb1rRe/Rb1ricarrin/Rb1rRc/Rb1rRb2/Rb1rRb3/Rb1rRd/Rb1 仪器一柱一-41.860 0-40.967 0-13.533 01.469 03.004 03.479 06.486 00.394 20.407 10.804 11.021 31.043 51.050 31.093 9 柱二-41.490 0-40.703 0-13.134 01.444 02.910 03.413 06.643 00.407 60.418 80.812 51.020 61.041 51.048 71.094 8 柱三-41.489 0-40.703 0-13.134 01.444 02.910 03.413 06.643 00.407 60.418 80.812 51.020 61.041 51.048 71.094 8 柱四-40.586 0-39.916 0-10.774 01.628 03.862 04.755 08.731 00.449 40.458 40.853 81.022 11.052 41.064 51.118 5 均值-41.356 3-40.572 3-12.643 81.496 33.171 53.765 07.125 80.414 70.425 80.820 71.021 21.044 71.053 11.100 5 RSD/%-1.311 5-1.121 1-9.970 25.922 814.581 817.549 315.054 25.782 65.270 02.730 60.068 30.496 10.727 31.088 2 仪器二柱一-41.137 0-40.967 0-13.533 01.469 03.004 03.479 06.486 00.405 90.417 40.807 51.020 31.040 81.048 21.097 4 柱二-41.820 0-41.011 0-13.554 01.429 02.875 03.394 06.855 00.405 90.417 40.807 51.020 31.040 81.048 21.097 4 柱三-42.917 0-43.247 0-11.631 01.780 02.440 03.425 06.974 00.446 00.441 60.867 31.02461.056 81.070 11.117 9 柱四-40.922 0-40.252 0-10.975 01.649 03.913 04.852 08.628 00.447 30.456 40.851 81.022 31.052 81.065 51.116 5 均值-41.699 0-41.369 3-12.423 31.581 83.058 03.787 57.235 80.426 30.433 20.833 51.021 71.047 81.058 01.107 3 RSD/%-2.152 9-3.140 7-10.633 410.315 620.240 918.760 013.144 95.520 64.436 53.688 00.174 80.787 01.084 21.033 7

表11 QAMS与ESM含量测定结果(n=7)

Tab. 11 Cmparison of result in Compound Ginseng Tablets by two methods(n=7)

编号含量/µg·g-1 Rg1ReicarrinRcRb2Rb3RdRb1 QAMSESMQAMSESMQAMSESMQAMSESMQAMSESMQAMSESMQAMSESMESM 10.827 0 0.946 4 2.878 8 2.765 1 0.211 4 0.179 3 1.926 3 2.646 0 0.670 7 0.744 5 0.578 0 0.614 5 2.012 5 2.011 4 4.675 1 20.836 5 0.858 9 2.895 8 2.786 4 0.212 0 0.179 5 2.288 1 2.128 1 0.686 7 0.654 4 0.507 7 0.536 4 2.007 5 2.010 4 4.761 6 30.852 5 0.842 3 2.915 5 2.731 5 0.122 0 0.161 4 2.333 7 2.160 5 0.695 8 0.654 9 0.515 0 0.537 8 2.000 1 2.009 4 4.737 4 40.841 4 0.929 6 2.895 8 2.776 4 0.109 5 0.165 1 2.362 3 2.161 3 0.695 1 0.665 4 0.515 4 0.543 2 2.001 3 2.005 1 4.699 3 50.841 2 0.854 3 2.878 8 2.016 9 0.139 4 0.174 7 2.366 3 2.190 1 0.706 9 0.662 6 0.521 2 0.544 1 2.007 8 2.009 4 4.673 5 60.841 2 0.854 3 2.878 8 2.776 9 0.118 8 0.150 2 2.396 2 2.083 2 0.704 3 0.640 0 0.522 3 0.533 6 1.972 1 2.009 4 4.771 5 70.985 7 1.051 5 2.665 4 2.005 6 0.102 1 0. 163 1 2.289 3 2.292 5 0.681 1 0.676 2 0.522 3 0.553 7 2.007 3 2.008 3 4.902 4 编号待测成分的保留时间/min Rg1ReicarrinRcRb2Rb3RdRb1 QAMSESMQAMSESMQAMSESMQAMSESMQAMSESMQAMSESMQAMSESMESM 125.297 724.790 027.079 626.003 056.986 558.237 069.859 069.859 071.456271.412 072.017 471.902 075.192 074.699 068.389 0 224.766 724.734 025.548 625.963 055.728 558.312 069.857 069.858 071.448971.414 071.987 471.902 075.226 474.735 069.382 0 326.293 724.779 027.075 626.008 056.983 258.220 069.860 169.857 071.452171.405 071.990 671.893 075.229 774.707 068.385 0 425.284 724.734 027.066 625.958 056.976 058.220 069.850 969.844 071.442771.391 071.981 171.879 075.219 874.719 068.376 0 525.306 724.738 027.588 625.964 055.395 758.232 070.384 169.796 071.988171.340 072.530 671.831 075.794 074.646 068.898 0 626.306 724.878 027.088 626.006 058.188 058.188 069.965 069.965 071.502071.502 072.008 072.008 075.244 074.731 068.398 0 724.378 025.104 025.104 026.252 055.016 258.196 069.900 069.900 071.432071.432 071.922 071.922 075.244 074.733 068.426 0

3 讨论

3.1 色谱条件的优化

极性皂苷和弱极性皂苷在低波长检测时灵敏度及选择性低,基线波动幅度大。为建立稳定的复方人参片色谱方法,应注意流动相的截止波长以及流动相的均匀性,避免短时间内流动相比例变化幅度过大,不适宜pH值,长时间高比例水相或磷酸分析导致色谱柱柱效降低[10-11],因此本试验将流动相的起始比例调整为乙腈-水(20∶80)。人参皂苷测定多采用蒸散检测器(ELSD)或可变波长检测器(VWD)扫描检测器[12-13],本实验采用二极管阵列检测器较ELSD具普遍性,较VWD可从保留时间与三维图谱同时确定目标成分,防止复方制剂的其他成分对测定的干扰,适用于各类基础实验室对苷类成分的测定,且色谱条件对色谱柱选择范围较宽。本实验考察国产乙腈和进口乙腈对基线波动的影响,结果显示二者无明显差异。

流动相梯度洗脱程序对色谱峰具有明显影响,柱温及流速也对色谱峰分离效果具有重要影响。通过比较待测组分的保留时间、灵敏度及分离度,低流速主要有助于人参皂苷Rg1与Re的分离,同时延长了分析时间,柱温是影响人参皂苷Rb1、Rc、Rb2、Rb3分离的重要因素,高柱温有利于Rb1、Rc、Rb2、Rb3的分离,不利于人参皂Rg1与Re的分离。

3.2 QMAS的耐用性与系统适用性

人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷在不同色谱柱及仪器的出峰顺序一致,分离度、对称因子均符合系统适用性要求;QAMS与ESM含量测定的结果无显著性差异。本试验采用保留时间差与相对保留值相结合的方法对色谱峰进行定位,除淫羊藿苷和人参皂苷Rd外,其他成分的色谱峰与ESM测得值无显著性差异,可能原因是淫羊藿苷和人参皂苷Rd含量较低。提高人参皂苷Rb1、Rb2、Rb3峰的响应值可以提高方法学的线性、精密度、准确性、重复现性。因此可以通过调节复方人参片样品溶液的进样量以提高系统适应性。

3.3 指标成分的选择及内参物的确定

中药制剂具有多成分多靶点的作用特点,人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷是复方人参片中特征活性成分,且与药效具有相关性,是评价片剂质量的重要指标。因人参皂苷Rg1、Rb1廉价易得,所以预实验选用两者作为内参物,并比较其相对校正因子的RSD值,相较于文献中多以人参皂苷Rg1、Re作为内参物[8,14],人参皂苷Rb1作为内参物重复性较好[15],且其相对保留值适中,在203 nm波长处的光谱信号强,与相邻待测峰的分离度>1.5。因此本试验选用人参皂苷Rb1作为内参物。

综上所述,本研究建立了一个快速、准确、耐用性、实用性较好的复方人参片多种苷类成分的一测多评定量方法。有利于实现以人参皂苷Rb1为内参物,通过计算人参皂苷Rg1、Re、Rb1、Rc、Rb2、Rb3、Rd、淫羊藿苷相对校正因子及保留时间差、相对保留值,且避免复方制剂中的不同中药需用不同色谱条件操作的复杂性,最后实现复方人参片多成分、多药效成分的质量评价。

REFERENCES

[1] 中国药典. 一部[S]. 2015: 附录 8-9.

[2] Attele A S, Wu J A, Yuan C S. Ginseng pharmacology: multiple constituents and multiple actions [J]. Biochem Pharmacol, 1999, 58(11): 1685- 1693.

[3] Zhang J J, He S, Zhang L, et al. Comprehensive characterization for ginsenosides biosynthesis in Ginseng Root by integration analysis of chemical and transcriptome [J]. Molecules, 2017, 22(6): 889.

[4] Wu H, Lien E J, Lien L L. Chemical and pharmacological investigations of Epimediumspecies: a survey [J]. Prog Drug Res, 2003(60): 1- 57.

[5] Cui L L, Zhang Y Y, Shao W, et al. Analysis of the HPLC fingerprint and QAMS from Pyrrosia species [J]. Industr Crops Prod, 2016(85): 29- 37.

[6] Wang C Q, Jia X H, Zhu S, et al. A systematic study on the influencing parameters and improvement of quantitative analysis of multi-component with single marker method using notoginseng as research subject [J]. Talanta, 2015(134): 587- 595.

[7] Stavrianidi A, Stekolshchikova E, Porotova A, et al. Combination of HPLC-MS and QAMS as a new analytical approach for determination of saponins in ginseng containing products [J]. J Pharm Biomed Anal, 2016(132): 87-92.

[8] Zhang M L, Cai G Z, Song Y, et al. Study on the determination of saponins in Ginseng Folium medicinal materials, extracts and preparations of saponins by QAMS [J]. Chin J Pharm Anal(药物分析杂志), 2015, 35(6): 997-1001.

[9] Jin R T, Yang S D, Fu J, et al. Determination of eight components in Qinbai Pingfei granule by quantitative analysis of multi-components with a single-marker [J]. Chin Tradit Herb Drugs(中草药), 2015, 46(24): 3682-3686.

[10] Gao Y, Chen L W, Chen D N, et al. Determination of ginsenoside Rg1, Re and Rb1 in Qixue Shuangbu Tinctura by HPLC [J]. Chin Arch Tradit Chin Med(中华中医药学刊), 2015, 33(9): 2095-2097.

[11] Cao S P, Nie L X, Wang G L, et al. HPLC simultaneous determination of nine ginsenosides in Shenmai injection [J]. Chine J Pharm Anal(药物分析杂志), 2011, 31(3): 476-478.

[12] 陈驰, 关琴笑, 朱冬宁等. 一测多评法测定人参中9种人参皂苷的含量[J]. 中药材, 2017, 40(1): 122-126.

[13] Liu X X, Yang L W, Ou G D, et al. Quantitative analysis of four saponins in compoind Danshen tablets by a QAMS [J]. Chin J New Drug(中国新药杂志), 2014, 23(21): 2561-2567.

[14] Geng Y N, Zhang W X. Simultaneous quantitative determination of ginsenosides Re, Rg1, Rb1 and notoginsenoside R1 in Fufang [J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2015, 21(1): 69-71.

[15] Wang X P, Wang F B, Wang J, et al. Simultaneous determination of four saponins in Tengzhuweikang granules by HPLC [J]. Chin J Mod Appl Pharma(中国现代应用药学), 2017, 34(4): 553-556.

(本文责编:曹粤锋)

Determination of eight glycosides in Compound Ginseng Tablets by QAMS

ZhangChuyu1, Chen Suhong2, Wu Suxiang1*

(1.School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; 2.Zhejiang University of Technology, Hangzhou 310014, China)

ABSTRACT: OBJECTIVE To establish a quantitative of multi-components by single maker for the content determination of eight glycosides in Compound Ginseng tablets. METHODS The analysis of methanol extract of this drug was performed on a 25 ℃ Agilent XDB-C18 column(4.6 mm×250 mm, 5 µm), with the mobile phase of water(A)-acetonitrile(B) flowing at 1.0 mL·min-1 in a gradient elution manner, and the detection wavelength was set at 203 nm. Ginsenoside Rb1 was used as the internal reference substance, RCFs of ginsenoside Rg1, ginsenoside Re, icarrin, ginsenoside Rc, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Rd was calculated. The contents of seven consitituents were determined by both external standard and QAMS. The validity of the QAMS method was evaluated by comparison of their quantitative results of both methods. RESULTS Eight consitituents showed good linear relationships within their own ranges (r≥0.999 0), whose average recoveries were 95.6%-104.4% with the RSDs of 1.22%-2.73%. The results obtained by QAMS method approximated those obtained by external standard method. CONCLUSION The method of QAMS turns out to be simple, sensitive, accurate , specific and reproducible in the quality control of Compound Ginseng tablets.

KEY WORDS: HPLC; glycosides; compound ginseng tablets; QAMS

作者简介:张初瑜,女,硕士生 Tel: 15700068035 E-mail: 544309936@QQ. com

*通信作者:吴素香,女,教授,硕导 Tel:13018913115 E-mail: wsx173@126. com

中图分类号:R284.1;R917.101

文献标志码:B

文章编号:1007-7693(2018)05-0708-07

DOI: 10.13748/j.cnki.issn1007-7693.2018.05.019

引用本文:张初瑜, 陈素红, 吴素香. 一测多评法测定复方人参片中的8种苷类成分[J]. 中国现代应用药学, 2018, 35(5): 708-714.

收稿日期:2017-09-04