淀粉样前体蛋白修饰、转运及其剪切加工研究进展

崔华清,殷菲*

(重庆理工大学,药物化学与分子药理学重庆市重点实验室,重庆 400054)

摘要:阿尔茨海默病(Alzheimer disease,AD)是一种常见的神经系统退行性疾病,其患病率随着年龄的增加而升高。越来越多的研究结果表明,淀粉样蛋白前体蛋白(amyloid precursor protein,APP)经β-,γ-分泌酶切割产生β淀粉样蛋白(β-amyloid,Aβ)的代谢过程异常是AD形成的主要原因。近年来,人们对APP的修饰及加工过程进行了大量的研究,取得了重要的进展,为AD的防治提供了新的靶点和思路。本文就有关APP修饰及剪切加工的研究进展做一综述。

关键词:阿尔茨海默病;淀粉样前体蛋白;修饰;加工

阿尔茨海默病(Alzheimer disease,AD)亦称老年性痴呆,是一种中枢神经系统退行性疾病,是老年痴呆中最常见的一种类型。AD主要表现为渐进性记忆障碍、认知功能障碍、人格改变及语言障碍等神经精神症状[1]。尽管到目前为止,AD的病因及发病机制仍不十分清楚,但是,淀粉样前体蛋白(amyloid precursor protein,APP)异常代谢产生的β-淀粉样蛋白(β-amyloid protein,Aβ)聚合、沉积被认为是AD形成的重要原因[2]

1 APP剪切加工

哺乳动物中,APP基因位于21号染色体,共有8个亚型,其亚型一般含有365~770个氨基酸残基。最常见的是APP695、APP751和APP770,其中APP695在中枢神经中高度表达。APP属I型跨膜糖蛋白,分子量约110~130 kDa,具有较大的膜外(氨基端)结构域和较小的胞质尾区(胞内羧基端)[3]。APP主要通过淀粉样(β途径)和非淀粉样(α途径)2种途径进行代谢。淀粉样途径即APP被β分泌酶切割成为sAPPβ和1个含有99个氨基酸的C端片段;后者进一步被γ分泌酶切割成为Aβ和ACID,这种途径生成的Aβ占Aβ总量的90%~95%,包括Aβ1-40和Aβ1-42 2种类型,其中Aβ1-40的含量较高,但Aβ1-42具有强疏水作用,其毒性较大,而且易于聚合。这些Aβ碎片会在线粒体、溶酶体以及内质网中积累,从而导致这些亚细胞器功能失调[4]。在基于α分泌酶的非淀粉质源途径中,α分泌酶将APP切割为sAPP和1个含有83个氨基酸的C端片段,然后被γ分泌酶切割产生P3和ACID,但这些小的片段会被神经元清除掉。

APP基因突变可引起蛋白表达异常或水解改变,从而影响Aβ在细胞中的含量和组成变化。Aβ在脑内主要以Aβ40和Aβ42 2种形式存在,其中Aβ42含量虽低(<10%),但易于聚合,进而纤维化而沉积,从而形成弥散性老年斑(senile plaque),这也是AD的主要病理特征之一。而且,APP在细胞膜上经β-和γ-分泌酶切割后产生的Aβ可以引起氧化应激、钙离子内流,进而损伤线粒体,导致神经细胞障碍,激活凋亡相关蛋白和因子,最终启动细胞的凋亡程序。另外,Aβ还可以通过引起脑内炎症反应和神经纤维缠结间接导致神经元凋亡,是AD形成和发展的重要原因[5-6]

2 APP在细胞中的转运及定位

近年来,越来越多的学者开始关注APP在细胞内的分布、定位和降解,以期发现AD发病的新机制[7-8]。正常情况下,在内质网上合成后,APP经分泌途径转运到细胞膜,其中一部分又经内吞(endocytosis)途径转运到内体(endosome)系统。大量数据显示,Aβ存在于内质网、线粒体、核内体、细胞核及高尔基体等不同的细胞器中[9]。为了保持Aβ的蛋白水平平衡,一些定位于不同细胞器中的蛋白酶如脑啡肽酶、胰岛素降解酶、组织蛋白酶和人类前序列蛋白酶(human presequence proteas, hPreP)[10-11]等,在清除细胞的Aβ中扮演着重要的角色。但是,到目前为止,APP在细胞中是如何被分选、如何被转运到各细胞器,又是如何被降解的,还有待于进一步深入研究。

研究人员在死后AD患者的大脑中发现,线粒体中有大量Aβ的聚积,同时细胞和转基因老鼠模型中的研究结果也证实了这一结论。除此之外,还有研究证实,Aβ不仅定位于线粒体,而且与线粒体靶蛋白存在相互作用。除Drp 1外,与Aβ相互作用的线粒体特征蛋白还有Aβ结合乙醇脱氢酶(Aβ-binding alcoholdehydrogenase,ABAD)、亲环蛋白(cyclophilin D,CypD)、细胞色素C氧化酶、电压依赖性阴离子通道(voltage dependent anion channel,VDAC)和hPreP等[12-17]。Del Prete等研究发现,线粒体相关膜(mitochondria-associated membranes,MAMs)结构变化对AD的形成和发展具有十分重要的作用。在过表达APP的转基因小鼠和APP基因突变的AD转基因小鼠的脑内,不仅APP及其代谢物大量存在于MAMs,而且β-、γ-分泌酶也大量共存于此,并具有APP剪切、加工活性。他们还在过表达APPswe的细胞模型上进一步研究发现,APP及其代谢产物与MAMs关键蛋白相互作用会使内质网与线粒体的结合位点明显增加,直接影响线粒体和内质网的功能[18]

另外,在AD模型小鼠中,APP酪氨酸(Tyr)的磷酸化也发生了改变[19-20]。在YENPTY基序(定位于APP695的682~687位氨基酸序列) 中,Tyr682的磷酸化和去磷酸化对APP是否能够进行正常的内吞非常重要[21]。而且,Tyr682在激活某些APP信号通路使APP与胞质内的衔接蛋白(adaptorproteins,AP)结合这一过程中扮演着“开关”的角色[22]。网格蛋白(Clathrin)介导的内吞作用在调节APP的转运和Aβ产生中是不可缺少的[23],但网格蛋白不与膜蛋白直接结合,而是通过与定位在不同细胞区室的衔接蛋白(如AP1-4等)特异性结合来调控APP的转运及在神经元中的定位[24]。Rebelo等[25]研究证实,YENPTY基序的酪氨酸磷酸化会延长APP在高尔基体和内质网中的停留时间,进而延迟其转运到质膜。另外,增加APP酪氨酸的磷酸化会破坏APP的结构,减少与网格蛋白和衔接蛋白(AP2)的结合,进而改变APP在细胞浆中的转运和分选。除此之外,酪氨酸的磷酸化还会直接影响APP与网格蛋白和衔接蛋白的结合,以此影响APP的内吞和转运。Martone等前期研究中也发现当Tyr682突变后会阻止APP与网格蛋白和衔接蛋白结合导致严重的神经元缺陷[26-28]

3 APP修饰与降解

APP在高尔基体(Golgi)、初级内体(early endosome)和次级内体(late endosome)等酸性环境中经β-和γ-分泌酶切割产生Aβ,同时也可以进入多囊内体(multivesicular endosomes,MVE)和溶酶体进行降解[29]。然而,在内质网应激条件下,APP还可通过泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)快速降解。Tam等[30]研究证实,AP-3可与APP相互作用促进APP转运,并经溶酶体途径降解;他们进一步研究发现,突变APP在细胞膜尾部的酪氨酸位点以及磷酸化APP的丝氨酸位点都会影响AP-3与APP的相互作用,抑制APP向溶酶体的转运。还有学者研究发现,Beclin 1可通过与细胞膜上的APP相互作用募集自噬/溶酶体调节蛋白PI3KC和UVRAG(UV radiationresistance- associated gene),促进APP内吞,并被分选到内体和内溶酶体上降解,间接抑制Aβ的产生[31]。上述研究结果表明,APP的修饰对其在细胞内的分布和降解具有十分重要的作用,调节APP的修饰不仅会影响APP在细胞内的分布、降解,而且还可间接下调Aβ的产生。

泛素化修饰是膜蛋白进入溶酶体降解的重要途径。首先,泛素化修饰能促进膜蛋白从细胞膜表面内吞回到细胞内;其次,到达内体膜后,泛素化修饰的膜蛋白能够被ESCRT(endosomal sorting complex required for transport)系统招募并分选到多囊内体的内腔膜泡(intraluminal vesicles,ILV)。多囊内体与溶酶体的进一步融合,促使膜蛋白在溶酶体上降解[32-33]。有研究发现,VHL作为APP的泛素连接酶,可对APP进行K63连接的多聚泛素化修饰,促进成熟形式的APP从细胞膜表面内吞,并分选到多囊内体内腔,进而通过溶酶体降解,最终起到负调控Aβ产生的作用[34]。Zhang等研究中也发现,UBLN1基因单核苷酸多态性与迟发性AD有关,它的蛋白产物Ubiquilin-1会调控APP的成熟,也会导致Aβ的积累。Ubiquilin蛋白是一个UBL蛋白,属于UBL-泛素相关(UBL-UBA)家族[35]。Ubiquilin-1的UBL和UBA区域均参与了PS的降解[36]。PS蛋白被认为是γ-分泌酶催化的核心部分[37],高水平的Ubiquilin可能会通过减少PS碎片的形成来降低γ-分泌酶的活性。另外,过表达Ubiquilin-1还会下调PEN-2和NCT的水平,并抑制APH-1的降解,促进γ-分泌酶切割APP,间接提高Aβ蛋白水平[38-39]

与此同时,其他学者也在泛素化连接酶与APP降解和Aβ生成的相关研究中取得了重要进展。Kaneko课题组研究发现,另外一个泛素化连接酶HRD1(Hmg-CoA reductase degradation ligase,也称Synoviolin)与APP共同在神经元中大量表达,而且存在相互作用。HRD1还能促进APP泛素化降解,直接减少Aβ产生;并且,抑制HRD1表达可诱导APP水平上调,并最终导致Aβ水平升高[40]。不仅如此,HRD1还与Aβ42寡聚物通过XBP-1s调节β分泌酶的表达水平有关[41]。尤其重要的是,在AD患者大脑皮层中,伴随Aβ水平的增加,HRD1蛋白水平明显下调,因此,调节HRD1表达可能是防治AD的重要策略[42]

4 结语与展望

大量实验结果显示,神经元内Aβ积累在AD早期发生,并可能在突触损伤,特别是突触前区的结构功能异常改变、淀粉样斑块形成、神经元死亡中起重要作用。APP的不同修饰方式不仅影响其被不同细胞器识别、转运,而且还对其降解及代谢途径产生Aβ有重要影响。尽管到目前为止APP分子的神经学功能尚不十分清楚,但很可能与突触的可塑性有关,而且APP代谢产生的Aβ成分积累、折叠和构象改变在AD的发展中扮演中心角色,因此,进一步探明APP在细胞内的分布、剪切加工方式及位点,不仅对于明确APP的剪切、加工途径有重要意义,而且可能为AD的防治提供新的思路。

随着人口日益老龄化,人们迫切需要了解AD的发病机制以及如何防治。在过去的数年里,研究人员基于Aβ级联假说、Tau蛋白磷酸化变化以及神经炎症等开发了许多生物标志物,以期能够在认知功能障碍出现之前,做到对AD的检测和追踪,比如针对Aβ的抗体和疫苗、β和γ分泌酶抑制剂、Aβ聚合抑制剂等。然而令人遗憾的是,到目前为止,几乎所有基于Aβ的疫苗、抗体、抑制剂的临床试验都以失败告终。

不过,随着人们对AD发病机制的进一步深入了解,研究人员愈发相信,对于AD的干预效果可能依赖于在更早阶段启动治疗措施。由于Aβ形成的淀粉样蛋白斑的形成一般早于出现明显的神经退行性病变大约15年左右,因此,AD的早期发现和干预可能是今后AD研究的重点;而且,基于Aβ级联早期阶段的药物仍有可能在AD的防治中发挥重要作用。当然,对于AD药物研发领域,更多样化的靶点发现对于AD的防治尤为重要。

REFERENCES

[1] VIANA R J, NUNES A F, RODRIGUES C M. Endoplasmic reticulum enrollment in Alzheimer’s disease [J]. Mol Neurobiol, 2012, 46(2): 522-534.

[2] GOLDE T E. Alzheimer disease: Host immune defence, amyloid-beta peptide and Alzheimer disease [J]. Nat Rev Neurol, 2016, 12(8): 433-444.

[3] NALIVAEVA N N, TURNER A J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease [J]. FEBS Lett, 2013, 587(13): 2046-2054.

[4] O’BRIEN R J, WONG P C. Amyloid precursor protein processing and Alzheimer’s disease [J]. Annu Rev Neurosci, 2011, 34: 185-204.

[5] FOGARTY M P, DOWNER E J, CAMPBELL V. A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons [J]. Biochem J, 2003, 371(Pt 3): 789-798.

[6] SONDAG C M, COMBS C K. Amyloid precursor protein cross-linking stimulates beta amyloid production and pro-inflammatory cytokine release in monocytic lineage cells [J]. J Neurochem, 2006, 97(2): 449-461.

[7] MOREL E, CHAMOUN Z, LASIECKA Z M, et al. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system [J]. Nat Commun, 2013(4): 2250. doi: 10.1038/ncomms3250.

[8] WILLEM M, TAHIROVIC S, BUSCHE M A, et al. η-Secretase processing of APP inhibits neuronal activity in the hippocampus [J]. Nature, 2015, 526(7573): 443-447.

[9] PENKE B, TOTH A M, FOLDI I, et al. Intraneuronal beta-amyloid and its interactions with proteins and subcellular organelles [J]. Electrophoresis, 2012, 33(24): 3608-3016.

[10] LEISSRING M A. The AbetaCs of Abeta-cleaving proteases [J]. J Biol Chem, 2008, 283(44): 29645-29649.

[11] NALIVAEVA N N, BECKETT C, BELYAEV N D, et al. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? [J]. J Neurochem, 2012, 120(Suppl 1): 167-185.

[12] SCHMIDT C, LEPSVERDIZE E, CHI S L, et al. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells [J]. Mol Psychiatry, 2008, 13(10): 953-969.

[13] ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloid-beta degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria [J]. J Alzheimers Dis, 2011, 27(1): 75-87.

[14] DU H, GUO L, FANG F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease [J]. Nat Med, 2008, 14(10): 1097-1105.

[15] DU H, GUO L, ZHANG W, et al. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model [J]. Neurobiol Aging, 2011, 32(3): 398-406.

[16] HERNANDEZ-ZIMBRON L F, LUNA-MUNOZ J, MENA R, et al. Amyloid-beta peptide binds to cytochrome C oxidase subunit 1 [J]. PLoS One, 2012, 7(8): e42344.

[17] SEO J S, LEE K W, KIM T K, et al. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease [J]. Free Radic Biol Med, 2011, 50(11): 1526-1535.

[18] DEL PRETE D, SUSKI J M, OULES B, et al. Localization and processing of the amyloid-beta protein precursor in mitochondria-associated membranes [J]. J Alzheimers Dis, 2017, 55(4): 1549-1570.

[19] GEORGAKOPOULOS A, XU J, XU C, et al. Presenilin 1/gamma-secretase promotes the EphB2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein [J]. FASEB J, 2011, 25(10): 3594-3604.

[20] YANG X, YANG Y, LIU J, et al. Increased phosphorylation of tau and synaptic protein loss in the aged transgenic mice expressing familiar Alzheimer’s disease-linked presenilin 1 mutation [J]. Neurochem Res, 2012, 37(1): 15-22.

[21] MULLER U C, ZHENG H. Physiological functions of APP family proteins [J]. Cold Spring Harb Perspect Med, 2012, 2(2): a006288.

[22] MATRONE C. A new molecular explanation for age-related neurodegeneration: the Tyr682 residue of amyloid precursor protein [J]. Bioessays, 2013, 35(10): 847-852.

[23] KELLY B T, GRAHAM S C, LISKA N, et al. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch [J]. Science, 2014, 345(6195): 459-463.

[24] POULSEN E T, IANNUZZI F, RASMUSSEN H F, et al. An aberrant phosphorylation of amyloid precursor protein tyrosine regulates its trafficking and the binding to the clathrin endocytic complex in neural stem cells of Alzheimer’s disease patients [J]. Front Mol Neurosci, 2017, 10: 59.

[25] REBELO S, VIEIRA S I, ESSELMANN H, et al. Tyrosine 687 phosphorylated Alzheimer’s amyloid precursor protein is retained intracellularly and exhibits a decreased turnover rate [J]. Neurodegener Dis, 2007, 4(2/3): 78-87.

[26] MATRONE C, LUVISETTO S, LA ROSA L R, et al. Tyr682 in the Abeta-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance [J]. Aging Cell, 2012, 11(6): 1084-1093.

[27] LA ROSA L R, PERRONE L, NIELSEN M S, et al. Y682G mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction [J]. Front Cell Neurosci, 2015(9): 109.

[28] POULSEN E T, LARSEN A, ZOLLO A, et al. New Insights to clathrin and adaptor protein 2 for the design and development of therapeutic strategies [J]. Int J Mol Sci, 2015, 16(12): 29446-29453.

[29] JOSHI G, WANG Y. Golgi defects enhance APP amyloidogenic processing in Alzheimer’s disease [J]. Bioessays, 2015, 37(3): 240-247.

[30] TAM J H, COBB M R, SEAH C, et al. Tyrosine binding protein sites regulate the intracellular trafficking and processing of amyloid precursor protein through a novel lysosome-directed pathway [J]. PLoS One, 2016, 11(10): e0161445.

[31] SWAMINATHAN G, ZHU W, PLOWEY E D. BECN1/Beclin 1 sorts cell-surface APP/amyloid beta precursor protein for lysosomal degradation [J]. Autophagy, 2016, 12(12): 2404-2419.

[32] RAIBORG C, STENMARK H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins [J]. Nature, 2009, 458(7237): 445-452.

[33] EDGAR J R, WILLEN K, GOURAS G K, et al. ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-beta accumulation [J]. J Cell Sci, 2015, 128(14): 2520-8.

[34] 单春燕. VHL促进APP的泛素化和溶酶体降解[D]. 北京:北京大学, 2013.

[35] ZHANG D, RAASI S, FUSHMAN D. Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains [J]. J Mol Biol, 2008, 377(1): 162-180.

[36] LEE J E, JEON I S, HAN N E, et al. Ubiquilin 1 interacts with Orai1 to regulate calcium mobilization [J]. Mol Cells, 2013, 35(1): 41-46.

[37] SCHROETER E H, ILAGAN M X, BRUNKAN A L, et al. A presenilin dimer at the core of the gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis [J]. Proc Natl Acad Sci USA, 2003, 100(22): 13075-13080.

[38] HE G, QING H, CAI F, et al. Ubiquitin-proteasome pathway mediates degradation of APH-1 [J]. J Neurochem, 2006, 99(5): 1403-1412.

[39] HONG L, HUANG H C, JIANG Z F. Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer’s disease [J]. Neurol Res, 2014, 36(3): 276-282.

[40] KANEKO M, KOIKE H, SAITO R, et al. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation [J]. J Neurosci, 2010, 30(11): 3924-3932.

[41] GERAKIS Y, DUNYS J, BAUER C, et al. Ab42 oligomers modulate beta-secretase through an XBP-1s-dependent pathway involving HRD1 [J]. Sci Rep, 2016(6): 37436. Doi: 10.1038/srep37436.

[42] KANEKO M, SAITO R, OKUMA Y, et al. Possible involvement of ubiquitin ligase HRD1 insolubilization in amyloid beta generation [J]. Biol Pharm Bull, 2012, 35(2): 269-272.

(本文责编:曹粤锋)

Advance of modification, trafficking and processing of amyloid precursor protein

Cui Huaqing, Yin Fei*

(Chongqing University of Technology, Chongqing Key Lab of Medicinal Chemistry & Molecular Pharmacology, Chongqing 400054, China)

ABSTRACT:Alzheimer’s disease(AD), the most common cause of dementia, is an irreversible, progressive brain disorder. The greatest risk factor is increasing age. An impressive number of references showed that the aggregation and deposit of β-amyloid(Aβ) produced from amyloid precursor protein(APP) were the major cause of the development of AD. Although the resource and mechanisms of AD development need to be explored, there are some progresses on the modification, trafficking, sorting and degradation of APP in recently years. Here, APP modification, trafficking and processingin vitroandin vivowas summarized.

Key Words:Alzheimer disease; amyloid precursor protein; modification; processing

中图分类号:R963

文献标志码:A

文章编号:1007-7693(2018)03-0444-04

DOI:10.13748/j.cnki.issn1007-7693.2018.03.032

引用本文:崔华清, 殷菲. 淀粉样前体蛋白修饰、转运及其剪切加工研究进展[J]. 中国现代应用药学, 2018, 35(3): 444-447.

收稿日期:2017-06-28

基金项目:重庆市杰出青年项目(cstc2014jcyjjq10003);重庆高校创新团队建设项目(CXTDX201601031)

作者简介:崔华清,女,硕士生 Tel: (023)62563182 E-mail: 1406364204@qq.com

*通信作者:殷菲,女,博士,教授 Tel: (023)62563182 E-mail: fyin@cqut.edu.cn