X-射线粉末衍射技术在多晶型药物定量分析中的应用

梅梅1,李煜2,杨伟峰1,2*

(1.浙江工业大学化学工程学院,杭州 310014;2.浙江省食品药品检验研究院,杭州 310052)

摘要:X-射线粉末衍射技术(X-ray powder diffraction,PXRD)是研究药物多晶型的主要手段之一。药物在生产过程中有时会发生晶型的转变,只进行晶型的定性分析已经不能满足现代药物的质量控制要求。本文通过查阅中外文献,对PXRD在多晶型药物定量分析中的具体应用进行了综述。采用PXRD定量分析药物的多晶型状态,将使实际工艺中药物的多晶型现象得到更明确的阐述和更合理的控制,从而建立科学的质量控制体系和严格的药物质量标准。

关键词:X-射线粉末衍射;药物多晶型;定量分析

X-射线粉末衍射技术(X-ray powder diffraction,PXRD)以晶体结构为基础,是研究药物多晶型的主要手段之一。从1832年Woehler和Liebig发现苯甲酰胺化合物存在2种不同的晶型以来,人们发现大多数固体药物都可能存在不同的晶型[1]。同一固体药物由于结晶过程、制剂加工手段、存储条件等不同,会产生不同的晶型,而这些晶型的原料药或制剂在颜色外观、密度、可压缩性、稳定性、溶解性、吸湿性、制剂加工性能、药效、甚至药物安全性等方面可能会存在显著区别[2-4],药物的晶型也作为一种新的专利形式进行保护。近年来该领域越来越受到学术界及制药工业界的重视,而药物晶型的定性及定量分析作为关键的研究手段在晶体药物产品的研发和生产过程中发挥着重要作用[5]。本文综述了PXRD定量分析在药物晶型分析中的研究和应用。

1 PXRD定量分析的理论依据[6]

任何晶体物质都具有固定的晶体结构类型、晶胞大小,晶胞中的原子、离子或分子数目以及它们所在的位置也都是特定的,因此能够给出特定的多晶体衍射花样。其衍射线的分布位置和强度有着特征性规律,因而成为物相鉴定的基础。PXRD准确度高,分辨能力强,可通过给出晶胞参数(如原子间距离、双面夹角等)确定药物晶型与结构,可用于区别晶态与非晶态、混合物与化合物的定性分析。每种相的各衍射线条d值(晶面间距)和双面夹角也不变,但混合物中各物相之间的相对强度则随各相在混合物中的百分比含量而变化。Alexander等于1948年首次提出了用于粉末混合物定量的基本参数,并推导了峰强度与样品中相应组分晶型含量的数学关系式[7],这奠定了该方法用于定量分析的理论基础。

2 PXRD定量分析的常用分析方法[8]

2.1 内标法

复杂的基质会影响PXRD定量分析的准确性,为了消除基体效应的影响,在试样中加入已知量的某种纯物质相作为标准物质的分析方法称为内标法。Dash等[9]以LiF为内标,开发了一种检测常温下乙基纤维素中托萘酯(I)的PXRD定量方法。但是由于需要选择合适的内标物,且内标物的加入量要严格一致,而且有些待测物的纯样也难以获取,这都使内标法的使用受到限制。

2.2 K值法及绝热法[10-11]

K值法是在内标法的基础上发展起来的,又称基体冲洗法(matrix-flushing method)。它是以刚玉(α-Al2O3)作为普适内标物进行分析。绝热法则是在K值法的基础上提出的,又叫自冲洗法,它不需要加入参比物,以样品中任一物相作为参比物,直接从混合物衍射强度分布曲线求出各组分的含量,从而避免了由参比物带来的误差和衍射线叠加。如果待测样品全部为已知相,没有非晶相,且每一个相的K值均为已知,可用这一方法测定各相的含量,此法多用于矿物分析中。

2.3 外标法[12]

对于各相吸收系数及密度均相等(如同素异构体)的多相混合物,通过测量混合样品中待测相某根衍射线的强度与纯待测相的同一条衍射线的强度之比,即可算出待测相在混合物中的相对含量。王立宇等[13]用此法进行了替勃龙Ⅰ晶型定量分析。Siddiqui等[14]在华法林钠晶型定量检测方法的开发和验证,BellurAtici等[15]在定量分析甲磺酸伊马替尼的多晶型,Varasteh等[16]在定量分析口服制剂中的多晶杂质,以及Sheikhzadeh等[17]在钉螺环酮盐酸盐晶体的定量和结构分析中均采用PXRD建立标准曲线进行分析。但是由于很多化合物标样不易获得,此法的应用也受到很大的限制。

以上3种分析方法在早期的无机材料分析中应用较广泛,随着分析检测要求的提高,以上方法在药物多晶型化合物定量分析中现已较少使用。

3 PXRD定量分析的应用发展

3.1 多变量拟合法

多变量拟合法是通过将理论计算得到的强度数据,以一定的峰形函数与实验强度数据拟合,反复改变计算中的一些参数(结构参数与峰形参数),使计算谱不断接近实测谱,并最终从理论上计算出完整的衍射谱。如果衍射谱峰没有有效分离,用前面几种方法会产生较大误差,而随着计算机技术的发展,利用专业软件进行数据拟合,与单峰法相比,全谱拟合法得到的数据更加准确[18]。此法不需要标样,在用PXRD进行多相定量分析特别是药物多晶型定量分析中的应用越来越广泛。

3.1.1 Rietveld法 1969年Rietveld[19]首次提出由粉末衍射阶梯扫描的峰形强度对结构进行修正的方法,克服了以往因多晶衍射图中衍射线的重叠及分辨率低,而只能使用一些分立的重叠峰的总积分强度,损失了这些复合峰内的结构信息的缺点,大大提高了PXRD的实用性。之后Reis do Carmo等[20]用PXRD结合Rietveld拟合法对抗高血压药氯沙坦钾、氢氯噻嗪及氯噻酮的晶体物相进行定性和定量分析。Nemet等[21]在法莫替汀多晶混合物(晶型A和B)的定量分析中同样采用这个方法,并指出Rietveld拟合法的使用使得PXRD方法更稳定,定量限<3%,精密度降至0.5%,而且和以前报道的拉曼光谱分析相比在定量分析方面有一定的优势。Iyengar等[22]以氟化锂为内标,研究了a-,b-无水卡马西平及二水卡马西平3种晶型混合物。研究结果表明,经过结合Rietveld拟合的分析方法的相对误差较低(5%),而检测限度可到1%,而且无需预制标准曲线。Rietveld法是目前较常用的多变量拟合方法,此法不需要标准品,但通常局限于晶型化合物分析。

3.1.2 化学计量法 化学计量法拟合的PXRD结合了布拉格衍射和漫反射全模式分析方法,可以增强信号,提高信噪比、灵敏度及选择性。经典的最小二乘法回归(CLS)、主成分回归(PCR)、偏最小二乘法回归(PLS)等是谱图处理中常用的化学计量方法。Moore等[23]采用不同的数据处理比较研究发现,与CLS和PCR相比,PLS数据统计结果最准确,且受衍射图样异常的影响较小。Li等[24]用PXRD、DSC和拉曼光谱在磺胺甲基嘧啶的二元组分(Form Ⅰ,Ⅱ)中晶型物质的定量分析方法的研究中,作者以PLS回归法为PXRD,拉曼光谱分析建立校准模型。同时指出,非在线的DSC法和无损的PXRD法可以给出同样准确度结果,但拉曼光谱分析法虽属非破坏性分析法,此条件下其结果的准确性不佳。Zimper等[25]以吲哚美辛和辛伐他汀为模板晶型药物,定量分析了样品研磨过程中转晶成无定型的比例,并以PLS方法建立了PXRD校准模型。Siddiqui等[26]使用PXRD对含无定形成分的他克莫司固体分散剂的中晶型成分进行定量分析,使用了PLS与PCR并进行了比较。Beyer等[27]也采用多变量偏最小二乘回归法开发了一种定量分析方法,可以同时定量分析样品中晶型萘普生、γ-吲哚美辛、α-吲哚美辛及萘普生-吲哚美辛共无定形物,并进行了交叉验证试验。在对结晶无水茶碱及乳糖、非晶型的微晶纤维素及可溶性淀粉的4组分样品进行PXRD分析过程中,Suda等[28]在卡马西平晶型研究中发现,用PLS方法来建立的校准模型比常规的峰面积模型具有更高的准确度。Caliandro等[29]也对卡马西平晶型进行了研究并指出,PLS方法得到的分析结果准确度和常用的Rietveld法相当。Uvarov等[30]在氯吡格雷重硫酸盐多晶混合物(CLP Ⅰ and CLP Ⅱ)的分析方法研究中,对全粉末谱分解法和经典直接法进行比较发现,二者的相对误差和重复性虽然接近,但全粉末谱分解法的数据结果准确性更高。

3.2 人造神经网络数据模型(ANN)

ANN是近年来发展的一种强大的非线性建模技术,可以模仿人类大脑神经功能及大脑工作和学习的人工智能,其强大的学习及总结能力,使得在复杂体系的识别及分类方面非常高效[31],近年来该技术被引入分析技术中。Agatonovic- Kustrin等[32]在甲苯咪唑原料中晶体杂质的分析和在悬浮剂中的晶型稳定性研究中,采用ANN工具分别对PXRD及全反射傅里叶红外数据进行处理,2种方法得到很相似的结果;Okumura等[33]也采用了ANN工具,对α-及γ-吲哚美辛多晶混合物进行了定量分析。Agatonovic-Kustrin等[34]也采用了ANN进行数据处理,考查了盐酸雷尼替丁多晶混合物及片剂中目标晶型物的含量。在相关实验中该方法均得到了较好的准确度。

3.3 其他方法

Cao等[35]第一次采用了非侵入式平行束X-射线衍射技术,分别以氯磺丙脲和甘氨酸为模板进行了无损多晶混合物定量分析,二者均得到了良好的线性回归;作者还指出,该分析方法对样品表面的形状不敏感。该课题组进一步研究发现,采用平行束透射X-射线衍射技术研究粉末压片过程中的转晶定量分析时,作标准曲线时需根据压力因素的影响,根据样品厚度和紧实度对数据进行修正,否则结果会偏低(以氯磺丙脲为例)[36]。Dong等[37]在PolySNAP计算机程序的支撑下,使用一种基于特殊的线性回归法的简单算法,该方法节省了不少人力及计算时间。

4 PXRD晶型定量分析中存在的问题

4.1 PXRD的择优取向

择优取向是由于多晶体中各晶粒的取向向某些方位偏聚,使衍射强度反常,从而导致定量结果产生偏差,这是引起PXRD检测结果偏差的重要原因。Croker等[38]在吡拉西坦2种混合晶型的定量分析中,Chieng等[39]在定量分析盐酸雷尼替丁的3种晶型混合物中,以及Tian等[40]在研究卡马西平样品性质对于晶型定量分析的影响中,均指出择优取向会影响PXRD的定量准确性。

有学者提出了改善这一问题的方法:Padrela等[41]指出降低样品的颗粒尺寸可以减小择优取向的影响;Campbell Roberts等[42]还指出样品旋转也可以改善这一问题,Tiwari等[43]也提出可以通过选择合适的步长和步速改善谱峰之间的分离度。另外,为了减少择优取向的影响,Nemet等[44]提出了聚焦束透射技术;Iwata等[45]提出了利用多层反射镜的平行光束光学性能;Nemet等[46]提出采用不同的测量程序,如用更合理的传输参数,更加细致的样品处理方法以及更长的信号采集时间来改善数据统计模型。

另外需要提出的是,化学计量法与PXRD的联合方法也是择优取向问题的一种解决方法。

4.2 PXRD方法评价及与其他方法比较

PXRD检测方法的评价备受关注,实验结果均得到较好的准确度和灵敏度[47-50]。但在以下药物的晶型研究中,PXRD的分析结果相对于其他方法也存在不足:McArdle等[51-55]指出PXRD的实验结果相对其他方法偏差较大;Bugay等[56-58]则指出此法灵敏度相对较差;Koradia等[59]在氯吡格雷硫酸盐多晶型的定量分析中,尝试了包括DSC,TGA,HSM,PXRD,FT-IR等方法,最终只有FT-IR分析法定量测量晶型Ⅰ通过相应的方法验证;Tozuka等[60]在克拉霉素多晶型化合物的定性和定量分析中,发展了固态核磁共振方法,得到了与PXRD相互印证的结果。

5 结论

药物晶型分析贯穿原料药研究与开发、制剂研究与开发等药物质量控制的各个阶段,与其他方法相比,PXRD是最经典、非破坏性、较准确的晶型定量方法,且PXRD现已成为药物晶型的定量分析中的主要通用方法。且随着仪器、软件的不断更新及新技术的发展,PXRD功能更加强大,可以实现更快、更灵敏、更高通量的分析。但是值得注意的是,药物晶型的定性定量分析需要综合多个分析手段进行综合判定,否则在某些极端条件下容易引起诸如头孢地尼晶型问题的学术研究、知识产权及商业利益纠纷等[61-62]

REFERENCES

[1] BLAGDEN N, DAVEY R, DENT G, et al. Woehlerand liebig revisited:  a small molecule reveals its secrets: the crystal structure of the unstable polymorph of benzamide solved after 173 years [J]. Cryst Growth Des, 2005, 5(6): 2218-2224.

[2] LLINÀS A, GOODMAN J M. Polymorph control: past, present and future [J]. Drug Discov Today, 2008, 13(5/6): 198-210.

[3] LU J, ROHANI S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs) [J]. Curr Med Chem, 2009, 16(7): 884-905.

[4] SAIFEE M, INAMDAR N, DHAMECHA D L, et al. Drug polymorphism: a review [J]. Int J Health Res, 2010, 2(4): 291-306.

[5] BERNSTEIN J. Polymorphism and patents from a chemist’s point of view, in Polymorphism in the Pharmaceutical Industry [M]. 1st Ed, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006: 365-382.

[6] 梁敬魁粉末衍射法测定晶体结构[M]. 第2版. 北京: 科学出版社, 2011.

[7] ALEXANDER L, KLUG H P. Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures [J]. Anal Chem, 1948, 20(10): 886-889.

[8] 徐勇, 范小红. X射线衍射测试分析基础教程[M]. 北京: 化学工业出版社, 2014.

[9] DASHA K, KHIN-KHIN A, SURYANARAYANAN R. X-ray powder diffractometric method for quantitation of crystalline drug in microparticulate systems. I. Microspheres [J]. J Pharm Sci, 2002, 91(4): 983-990.

[10] CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. Ⅲ. Simultaneous determination of a set of reference intensities [J]. J Appl Crystallogr, 1975, 8(1): 17-19.

[11] CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. Ⅱ. Adiabatic principle of X-ray diffraction analysis of mixtures [J]. J Appl Crystallogr, 1974, 7(6): 526-531.

[12] CHU G, CHU G. An external standard method of quantitative phase analysis of the sample containing an amorphous phrase by X-ray diffraction [J]. Acta Metallurgica Silica, 1994, 55(3): 179-182.

[13] WANG L Y, ZHU L. The establishment of standard curve used for quantifying polymorphy Ⅰ of tibolone [J]. Chin J Antibiotics(中国抗生素杂志), 2014, 39(11): 819-824.

[14] SIDDIQUI A, RAHMAN Z, KORANG-YEBOAH M, et al. Development and validation of X-ray diffraction method for quantitative determination of crystallinity in warfarin sodium products [J]. Int J Pharm, 2015, 493(1/2): 1-6.

[15] BELLURATICI E, KARLIGA B. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy [J]. J Pharm Biomed Anal, 2015(114): 330-340.

[16] VARASTEH M, DENG Z, HWANG H, et al. Quantitative determination of polymorphic impurity by x-ray powder diffractometry in an OROS®formulation [J]. Int J Pharm, 2009, 366(1/2): 74-81.

[17] SHEIKHZADEH M, ROHANI S, JUTAN A, et al. Quantitative and molecular analysis of buspirone hydrochloride polymorphs [J]. J Pharm Sci, 2007, 96(3): 569-583.

[18] SHAH B, KAKUMANU V K, BANSAL A K, et al. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids [J]. J Pharm Sci, 2006, 95(95): 1641-1665.

[19] RIETVELD H M. A profile refinement method for nuclear and magnetic structure [J]. J Appl Crystallogr, 1969, 2(2): 65-71.

[20] REIS DO CARMO W, FERREIRA F F, DINIZ R. Phase quantification of antihypertensive drugs-chlorthalidone, hydrochlorothiazide, losartan and combinations, losartan/chlorthalidone and losartan/hydrochlorothiazide - by the rietveld method [J]. J Pharm Biomed Anal, 2014, 88(1): 152-156.

[21] NEMET Z, SAJO I, DEMETER A. Rietveld refinement in the routine quantitative analysis of famotidine polymorphs [J]. J Pharm Biomed Anal, 2010, 51(3): 572-576.

[22] IYENGAR S S, PHADNIS N V, SURYANARAYANAN R. Quantitative analyses of complex pharmaceutical mixtures by the Rietveld method [J]. Powder diffr, 2001, 16(1): 20-24.

[23] MOORE M D, COGDILL R P, WILDFONG P L D. Evaluation of chemometric algorithms in quantitative X-ray powder diffraction (XRPD) of intact multi-component consolidated samples [J]. J Pharm Biomed Anal, 2009, 49(3): 619-626.

[24] LI Y, CHOW P S, TAN R B H. Quantification of polymorphic impurity in an enantiotropic polymorph system using differential scanning calorimetry. X-ray powder diffraction and Raman spectroscopy [J]. Int J Pharm, 2011, 415(1/2): 110-118.

[25] ZIMPER U, AALTONEN J, MCGOVERIN C M, et al. Quantification of process induced disorder in milled samples using different analytical techniques [J]. Pharmaceutics, 2010, 2(1): 30-49.

[26] SIDDIQUI A, RAHMAN Z, BYKADI S, et al. Chemometric methods for the quantification of crystalline tacrolimus in solid dispersion by powder X-ray diffractrometry [J]. J Pharm Sci, 2014, 103(9): 2819-2828.

[27] BEYER A, GROHGANZ H, LOEBMANN K, et al. Multivariate quantification of the solid state phase composition of co-amorphous naproxen-indomethacin [J]. Molecules, 2015, 20(10): 19571-19587.

[28] SUDA M, TAKAYAMA K, OTSUKA M. An accurate quantitative analysis of polymorphic content by chemometric X-ray powder diffraction [J]. Anal Sci, 2008, 24(4): 451-457.

[29] CALIANDRO R, DI PROFIO G, NICOLOTTI O. Multivariate analysis of quaternary carbamazepine-saccharin mixtures by X-ray diffraction and infrared spectroscopy [J]. J Pharm Biomed Anal, 2013, 78-79(9): 269-279.

[30] UVAROV V, POPOV I. Development and metrological characterization of quantitative X-ray diffraction phase analysis for the mixtures of clopidogrelbisulphate polymorphs [J]. J Pharm Biomed Anal, 2008, 46(4): 676-682.

[31] BISHOP C M. Neural Networks for Pattern Recognition [M]. Oxford, England: Oxford University Press, 1995.

[32] AGATONOVIC-KUSTRIN S, GLASS B D, MANGAN M, et al. Analysing the crystal purity of mebendazole raw material and its stability in a suspension formulation [J]. Int J Pharm, 2008, 361(1/2): 245-250.

[33] OKUMURA T, NAKAZONO M, OTSUKA M, et al. An accurate quantitative analysis of polymorphs based on artificial neural networks [J]. Colloids Surf B, 2006, 49(2): 153-157.

[34] AGATONOVIC-KUSTRIN S, WU V, RADES T, et al. Ranitidine hydrochloride X-ray assay using a neural network [J]. J Pharm Biomed Anal, 2000, 22(6): 985-992.

[35] CAO W, BATES S, PECK G E, et al. Quantitative determination of polymorphic composition in intact compacts by parallel-beam X-ray powder diffractometry [J]. J Pharm Biomed Anal, 2002, 30(4): 1111-1119.

[36] WILDFONG P L D, MORLEY N A, MOORE M D, et al. Quantitative determination of polymorphic composition in intact compacts by parallel-beam X-ray powder diffractometry II. Data correction for analysis of phase transformations as a function of pressure [J]. J Pharm Biomed Anal, 2005, 39(1/2): 1-7.

[37] DONG W, GILMORE C, BARR G, et al. A quick method for the quantitative analysis of mixtures. 1. Powder X-ray diffraction [J]. J Pharm Sci, 2008, 97(6): 2260-2276.

[38] CROKER D M, HENNIGAN M C, MAHER A, et al. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam [J]. J Pharm Biomed Anal, 2012, 63(7): 80-86.

[39] CHIENG N, REHDER S, SAVILLE D, et al. Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction [J]. J Pharm Biomed Anal, 2009, 49(1): 18-25.

[40] TIAN F, ZHANG F, SANDLER N, et al. Influence of sample characteristics on quantification of carbamazepine hydrate formation by X-ray powder diffraction and Raman spectroscopy [J]. Eur J Pharm Biopharm, 2007, 66(3): 466-474.

[41] PADRELA L, DE AZEVEDO E G, VELAGA S P. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture [J]. Drug Dev Ind Pharm, 2011, 38(3): 923-929.

[42] CAMPBELL ROBERTS S N, WILLIAMS A C, GRIMSEY I M, et al. Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry-exploring preferred orientation effects [J]. J Pharm Biomed Anal, 2002, 28(6): 1149-1159.

[43] TIWARI M, CHAWLA G, BANSAL A K. Quantification of olanzapine polymorphs using powder X-ray diffraction technique [J]. J Pharm Biomed Anal, 2007, 43(3): 865-872.

[44] NEMET Z, SAJO I, DEMETER A. Rietveld refinement in the routine quantitative analysis of famotidine polymorphs [J]. J Pharm Biomed Anal, 2010, 51(3): 572-576.

[45] IWATA A, KAWAI J. X-ray absorption-diffraction quantitative analysis using parallel beam XRD technique and WD-XRF elemental analysis result for so-called "aspirin" [J]. X-sen Bunseki no Shinpo, 2012, 43(3): 127-138.

[46] NEMET Z, KIS G C, POKOL G, et al. Quantitative determination of famotidine polymorphs: X-ray powder diffractometric and Raman spectrometric study [J]. J Pharm Biomed Anal, 2009, 49(2): 338-346.

[47] PETKUNE S, BOBROVS R, ACTINS A. Determination of trace amounts of β tegafur in commercial α tegafur by powder X-ray diffractometric analysis [J]. J Pharm Pharmaco, 2011, 63(9): 1136-1140.

[48] DONG Z, MUNSON E J, SCHROEDER S A, et al. Anhydrate Polymorphs Ⅱ: Quantitation and Relative Physical Stability [J]. Pharm Res, 2002, 19(9): 1259-1264.

[49] LU Q L, YANG G, GU H. Phase quantification of two chlorothalonil polymorphs by X-ray powder diffraction [J]. Anal Chim Acta, 2005, 538(1/2): 291-296.

[50] MANIMARAN A, GUNASEELAN S, RAO G R, et al. Determination of traces of crystalline cefuroxime axetil content in cefuroxime axetil amorphous drug substance using powder X-ray diffraction (PXRD) technique [J]. J Chem Pharm Res, 2013, 5(1): 37-44.

[51] MCARDLE P, GILLIGAN K, CUNNINGHAM D, et al. Determination of the polymorphic forms of bicifadine hydrochloride by differential scanning calorimetry- thermogravimetric analysis, X-ray powder diffraction, attenuated total reflectance-infrared spectroscopy, and attenuated total reflectance-near-infrared spectroscopy [J]. Appl Spectr, 2005, 59(11): 1365-1371.

[52] OTSUKA M, KATO F, MATSUDA Y. Determination of indomethacin polymorphic contents by chemometric near-infrared spectroscopy and conventional powder X-ray diffractometry [J]. Analyst, 2001, 126(9): 1578-1582.

[53] OTSUKA M, KATO F, MATSUDA Y, et al. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and X-ray powder diffractometry [J]. AAPS Pharm Sci Tech, 2003, 4(2): 147-158.

[54] GUNASEELAN S, RAO R, MANIMARAN A, et al. Determination of traces of amorphous Cefuroxime axetil content in Cefuroxime axetil crystalline drug substance using modulated differential scanning calorimetry (MDSC) [J]. J Chem Pharm Res, 2012, 4(11): 4743-4751.

[55] RAUT D M, SAKHARKAR D M, BODKE P S, et al. Determination of traces of amorphous carvidilol content in carvedilol drug substance and drug product using modulated differential scanning calorimetry [J]. Der Pharmacia Lettre, 2011, 3(4): 1-12.

[56] BUGAY D E, NEWMAN A W, FINDLAY W P. Quantitation of cefepime-2HCl dihydrate in cefepime-2HCl monohydrate by diffuse reflectance IR and powder X-ray diffraction techniques [J]. J Pharm Biomed Anal, 1996, 15(1): 49-61.

[57] SKORDA D, KONTOYANNIS C G. Identification and quantitative determination of atorvastatin calcium polymorph in tablets using FT-Raman spectroscopy [J]. Talanta, 2008, 74(4): 1066-1070.

[58] SONG M, LIEBENBERG W, DE VILLIERS M M. Comparison of high sensitivity micro differential scanning calorimetry with X-ray powder diffractometry and FTIR spectroscopy for the characterization of pharmaceutically relevant non-crystalline materials [J]. Pharmazie, 2006, 61(4): 336-340.

[59] KORADIA V, CHAWLA G, BANSAL A K. Qualitative and quantitative analysis of clopidogrel bisulphate polymorphs [J]. Acta Pharm, 2004, 54(3): 193-204.

[60] TOZUKA Y, ITO A, SEKI H, et al. Characterization and quantitation of clarithromycin polymorphs by powder X-ray diffractometry and solid-state NMR spectroscopy [J]. Chem Pharm Bull, 2002, 50(8): 1128-1130.

[61] YU L, REUTZEL S M, STEPHENSON G A. Physical characterization of polymorphic drugs: an integrated characterization strategy [J]. Pharm Sci Tech Today, 1998, 1(3): 118-127.

[62] CABRI W, GHETTI P, POZZI G, et al. Polymorphisms and patent, market, and legal battles: cefdinir case study [J]. Org Proc Res Dev, 2007, 11(1): 64-72.

(本文责编:蔡珊珊)

Application of X-ray Powder Diffraction to Quantitative Analysis of Pharmaceutical Polymorphism

MEI Mei1, LI Yu2, YANG Weifeng1,2*

(1.College of Chemical Engineering of Zhejiang University of Technology, Hangzhou 310014, China; 2.Zhejiang Institute for Food and Drug Control,Hangzhou 310052, China)

ABSTRACT:X-ray powder diffraction technique is one of the main methods to study drug polymorphs. In the process of drug production, there would be a change of crystal type, only the qualitative analysis of the crystalline form has not satisfied the quality control requirements of modern medicine. In this paper, the application of X-ray powder diffraction technique in the quantitative analysis of polymorphic drugs is reviewed by consulting domestic and foreign literature. The crystalline state analysis of the drug by x-ray diffraction quantitative technology, will enable the drug polymorphism in the practical process more clearly elaborated and more reasonable control, so as to establish a scientific quality control system and strict quality standard of drugs.

KEY WORDS:x-ray powder diffraction; pharmaceutical polymorphism; quantitative analysis

中图分类号:R944.2

文献标志码:B

文章编号:1007-7693(2017)09-1356-05

DOI:10.13748/j.cnki.issn1007-7693.2017.09.032

引用本文:梅梅, 李煜, 杨伟峰. X-射线粉末衍射技术在多晶型药物定量分析中的应用[J]. 中国现代应用药学, 2017, 34(9): 1356-1360.

基金项目:浙江省食品药品监管系统科技计划项目(2014004)

作者简介:梅梅,女,硕士生 Tel: (0571)87180340 E-mail: 2231805924@qq.com

*通信作者:杨伟峰,男,硕士,主任药师 Tel: (0571)87180355 E-mail: ywfhz@163.com

收稿日期:2017-01-25